Parmila Devi, Manoranjan Rai Bharti, Dikshant Gautam
{"title":"A survey on physical layer security for 5G/6G communications over different fading channels: Approaches, challenges, and future directions","authors":"Parmila Devi, Manoranjan Rai Bharti, Dikshant Gautam","doi":"10.1016/j.vehcom.2025.100891","DOIUrl":null,"url":null,"abstract":"<div><div>The surge in wireless network attacks has intensified the focus on physical layer security (PLS) within academia and industry. As PLS provides security solutions by leveraging the randomness of wireless channels without the need for encryption/decryption keys, fading channels play a major role in PLS solutions. This survey aims to understand the effect of fading on PLS for 5G/6G communications by utilizing various PLS techniques such as beamforming, artificial noise injection, cooperative and opportunistic relaying, physical authentication, and intelligent reflective surface-based PLS over various fading channels. Initially, the role of PLS in 5G/6G communications, its fundamentals, and various techniques available for 5G/6G communications are examined. Since PLS for 5G communications has been extensively studied in the literature, we categorize it into two cases, direct and indirect communications, and provide a comprehensive survey on PLS for 5G communications over various fading channels. Thereafter, we survey the PLS for 6G communications over various fading channels, noting that the work available for PLS in 6G communications is limited and in its early stages. Given the increasing attention on artificial intelligence and machine learning (AI/ML) for wireless communications, this survey also explores PLS based on AI/ML techniques over various fading channels. Finally, the survey concludes with observations on challenges and future directions.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100891"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221420962500018X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The surge in wireless network attacks has intensified the focus on physical layer security (PLS) within academia and industry. As PLS provides security solutions by leveraging the randomness of wireless channels without the need for encryption/decryption keys, fading channels play a major role in PLS solutions. This survey aims to understand the effect of fading on PLS for 5G/6G communications by utilizing various PLS techniques such as beamforming, artificial noise injection, cooperative and opportunistic relaying, physical authentication, and intelligent reflective surface-based PLS over various fading channels. Initially, the role of PLS in 5G/6G communications, its fundamentals, and various techniques available for 5G/6G communications are examined. Since PLS for 5G communications has been extensively studied in the literature, we categorize it into two cases, direct and indirect communications, and provide a comprehensive survey on PLS for 5G communications over various fading channels. Thereafter, we survey the PLS for 6G communications over various fading channels, noting that the work available for PLS in 6G communications is limited and in its early stages. Given the increasing attention on artificial intelligence and machine learning (AI/ML) for wireless communications, this survey also explores PLS based on AI/ML techniques over various fading channels. Finally, the survey concludes with observations on challenges and future directions.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.