LEAF-YOLO: Lightweight Edge-Real-Time Small Object Detection on Aerial Imagery

Van Quang Nghiem, Huy Hoang Nguyen, Minh Son Hoang
{"title":"LEAF-YOLO: Lightweight Edge-Real-Time Small Object Detection on Aerial Imagery","authors":"Van Quang Nghiem,&nbsp;Huy Hoang Nguyen,&nbsp;Minh Son Hoang","doi":"10.1016/j.iswa.2025.200484","DOIUrl":null,"url":null,"abstract":"<div><div>Advances in Unmanned Aerial Vehicles (UAVs) and deep learning have spotlighted the challenges of detecting small objects in UAV imagery, where limited computational resources complicate deployment on edge devices. While many high-accuracy deep learning solutions have been developed, their large parameter sizes hinder deployment on edge devices where low latency and efficient resource use are essential. To address this, we propose LEAF-YOLO, a lightweight and efficient object detection algorithm with two versions: LEAF-YOLO (standard) and LEAF-YOLO-N (nano). Using Lightweight-Efficient Aggregating Fusion along with other blocks and techniques, LEAF-YOLO enhances multiscale feature extraction while reducing complexity, targeting small object detection in dense and varied backgrounds. Experimental results show that both LEAF-YOLO and LEAF-YOLO-N outperform models with fewer than 20 million parameters in accuracy and efficiency on the Visdrone2019-DET-val dataset, running in real-time (<span><math><mo>&gt;</mo></math></span>30 FPS) on the Jetson AGX Xavier. LEAF-YOLO-N achieves 21.9% AP<span><math><msub><mrow></mrow><mrow><mo>.</mo><mn>50</mn><mo>:</mo><mo>.</mo><mn>95</mn></mrow></msub></math></span> and 39.7% AP<span><math><msub><mrow></mrow><mrow><mo>.</mo><mn>50</mn></mrow></msub></math></span> with only 1.2M parameters. LEAF-YOLO achieves 28.2% AP<span><math><msub><mrow></mrow><mrow><mo>.</mo><mn>50</mn><mo>:</mo><mo>.</mo><mn>95</mn></mrow></msub></math></span> and 48.3% AP<span><math><msub><mrow></mrow><mrow><mo>.</mo><mn>50</mn></mrow></msub></math></span> with 4.28M parameters. Furthermore, LEAF-YOLO attains 23% AP<span><math><msub><mrow></mrow><mrow><mo>.</mo><mn>50</mn></mrow></msub></math></span> on the TinyPerson dataset, outperforming models with <span><math><mo>≥</mo></math></span> 20 million parameters, making it suitable for UAV-based human detection.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"25 ","pages":"Article 200484"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in Unmanned Aerial Vehicles (UAVs) and deep learning have spotlighted the challenges of detecting small objects in UAV imagery, where limited computational resources complicate deployment on edge devices. While many high-accuracy deep learning solutions have been developed, their large parameter sizes hinder deployment on edge devices where low latency and efficient resource use are essential. To address this, we propose LEAF-YOLO, a lightweight and efficient object detection algorithm with two versions: LEAF-YOLO (standard) and LEAF-YOLO-N (nano). Using Lightweight-Efficient Aggregating Fusion along with other blocks and techniques, LEAF-YOLO enhances multiscale feature extraction while reducing complexity, targeting small object detection in dense and varied backgrounds. Experimental results show that both LEAF-YOLO and LEAF-YOLO-N outperform models with fewer than 20 million parameters in accuracy and efficiency on the Visdrone2019-DET-val dataset, running in real-time (>30 FPS) on the Jetson AGX Xavier. LEAF-YOLO-N achieves 21.9% AP.50:.95 and 39.7% AP.50 with only 1.2M parameters. LEAF-YOLO achieves 28.2% AP.50:.95 and 48.3% AP.50 with 4.28M parameters. Furthermore, LEAF-YOLO attains 23% AP.50 on the TinyPerson dataset, outperforming models with 20 million parameters, making it suitable for UAV-based human detection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信