State and parameter estimation in closed-loop dynamic real-time optimization — A comparative study

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
José Matias , Christopher L.E. Swartz
{"title":"State and parameter estimation in closed-loop dynamic real-time optimization — A comparative study","authors":"José Matias ,&nbsp;Christopher L.E. Swartz","doi":"10.1016/j.compchemeng.2024.108932","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic real-time optimization (DRTO) schemes have risen in popularity as plant environments have become increasingly dynamic due to globalization and deregulated energy markets. Inclusion of the impact of the plant control system on the predicted response gives rise to closed-loop DRTO (CL-DRTO). To avoid using a potentially inaccurate nominal model in CL-DRTO, this work explores incorporating plant measurements through various model updating strategies: bias update, state estimation, and combined parameter and state estimation, the latter two utilizing moving horizon estimation. The strategies are applied to two case studies, a distillation column and a continuous stirred tank reactor. Our findings suggest that the combined state and parameter estimation approach provides improvement in economic performance and fewer constraint violations when parametric uncertainty affects system dynamics nonlinearly. Conversely, the bias update strategy achieves satisfactory economic performance when the propagation of parameter uncertainty in the dynamic model is linear or mildly nonlinear.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108932"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic real-time optimization (DRTO) schemes have risen in popularity as plant environments have become increasingly dynamic due to globalization and deregulated energy markets. Inclusion of the impact of the plant control system on the predicted response gives rise to closed-loop DRTO (CL-DRTO). To avoid using a potentially inaccurate nominal model in CL-DRTO, this work explores incorporating plant measurements through various model updating strategies: bias update, state estimation, and combined parameter and state estimation, the latter two utilizing moving horizon estimation. The strategies are applied to two case studies, a distillation column and a continuous stirred tank reactor. Our findings suggest that the combined state and parameter estimation approach provides improvement in economic performance and fewer constraint violations when parametric uncertainty affects system dynamics nonlinearly. Conversely, the bias update strategy achieves satisfactory economic performance when the propagation of parameter uncertainty in the dynamic model is linear or mildly nonlinear.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信