Valentin Krespach , Nicolas Blum , Martin Pottmann , Sebastian Rehfeldt , Harald Klein
{"title":"Improving extrapolation capabilities of a data-driven prediction model for control of an air separation unit","authors":"Valentin Krespach , Nicolas Blum , Martin Pottmann , Sebastian Rehfeldt , Harald Klein","doi":"10.1016/j.compchemeng.2024.108953","DOIUrl":null,"url":null,"abstract":"<div><div>In model predictive control, fully data-driven prediction models can be used besides common (non-)linear prediction models based on first-principles. Although no process knowledge is required while relying only on sufficient data, they suffer in their extrapolation capability which is shown in the present work for the control of an air separation unit. In order to compensate for the deficits in the extrapolation behavior, a further data source, here a digital twin, is deployed for additional data generation. The plant data set is augmented with the artificially generated data giving rise to a hybrid model in terms of data generation. It is shown that this model can significantly improve the prediction quality in former extrapolation areas of the plant data set. Even conclusions about the uncertainty behavior of the prediction model can be found.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108953"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003715","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In model predictive control, fully data-driven prediction models can be used besides common (non-)linear prediction models based on first-principles. Although no process knowledge is required while relying only on sufficient data, they suffer in their extrapolation capability which is shown in the present work for the control of an air separation unit. In order to compensate for the deficits in the extrapolation behavior, a further data source, here a digital twin, is deployed for additional data generation. The plant data set is augmented with the artificially generated data giving rise to a hybrid model in terms of data generation. It is shown that this model can significantly improve the prediction quality in former extrapolation areas of the plant data set. Even conclusions about the uncertainty behavior of the prediction model can be found.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.