The effects of staggered and non-staggered joints on the ultimate bearing capacity, load settlement behavior, and failure mechanism with the change of excavation depths

Argha Biswas, Aditya Singh, Mahendra Singh
{"title":"The effects of staggered and non-staggered joints on the ultimate bearing capacity, load settlement behavior, and failure mechanism with the change of excavation depths","authors":"Argha Biswas,&nbsp;Aditya Singh,&nbsp;Mahendra Singh","doi":"10.1016/j.rockmb.2024.100154","DOIUrl":null,"url":null,"abstract":"<div><div>Extensive research is available on excavation walls in soils. However, very few studies address their performance in rocks and jointed rock masses. This study aimed to investigate the effect of staggered and non-staggered joints on ultimate bearing capacity, load settlement behavior, failure mechanism, and lateral wall displacement for a jointed rock mass supported by an excavation wall. The present study has been conducted on scaled 2D physical laboratory model tests. Tests were performed on artificial jointed rock masses comprising orthogonal joint sets and an excavation wall supporting a nearby foundation. Two sets of rock masses were prepared, one with continuous joints and another with slightly staggered joints. Three different excavation depths were used in this study. The results revealed that minor staggering significantly enhanced bearing capacity by two to three times compared to continuous joints. Furthermore, the presence of minor staggering reduced both vertical settlement of the footing and lateral movement of the excavation wall, thereby altering the failure patterns. Additionally, a discrete element model (DEM) was developed using the Universal Distinct Element Code (UDEC) to compare numerical simulation results with the physical model test results. The discrepancies between the numerical and physical model results were attributed to the difficulty in accurately representing the physical position of individual blocks in the UDEC model. This issue was addressed by introducing the concept of “apparent cohesion” and aligning DEM results closely with experimental outcomes, confirming the effectiveness of this approach in reconciling numerical and physical model differences.</div></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"4 1","pages":"Article 100154"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230424000532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive research is available on excavation walls in soils. However, very few studies address their performance in rocks and jointed rock masses. This study aimed to investigate the effect of staggered and non-staggered joints on ultimate bearing capacity, load settlement behavior, failure mechanism, and lateral wall displacement for a jointed rock mass supported by an excavation wall. The present study has been conducted on scaled 2D physical laboratory model tests. Tests were performed on artificial jointed rock masses comprising orthogonal joint sets and an excavation wall supporting a nearby foundation. Two sets of rock masses were prepared, one with continuous joints and another with slightly staggered joints. Three different excavation depths were used in this study. The results revealed that minor staggering significantly enhanced bearing capacity by two to three times compared to continuous joints. Furthermore, the presence of minor staggering reduced both vertical settlement of the footing and lateral movement of the excavation wall, thereby altering the failure patterns. Additionally, a discrete element model (DEM) was developed using the Universal Distinct Element Code (UDEC) to compare numerical simulation results with the physical model test results. The discrepancies between the numerical and physical model results were attributed to the difficulty in accurately representing the physical position of individual blocks in the UDEC model. This issue was addressed by introducing the concept of “apparent cohesion” and aligning DEM results closely with experimental outcomes, confirming the effectiveness of this approach in reconciling numerical and physical model differences.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信