Analysis of tunnel lining internal forces under the influence of S and P-waves: An analytical solution and quasi-static numerical method

Rouhollah Basirat
{"title":"Analysis of tunnel lining internal forces under the influence of S and P-waves: An analytical solution and quasi-static numerical method","authors":"Rouhollah Basirat","doi":"10.1016/j.rockmb.2024.100168","DOIUrl":null,"url":null,"abstract":"<div><div>This paper employs analytical and pseudo-static approaches to analyze the tunnel response under the compression (P) and shear (S) waves. In the first step, Einstein and Schwartz’s method is revised for calculating Tunnel Lining Internal Forces (TLIFs) under P-wave. Next, a comprehensive comparison is performed between TLIFs under S and P-waves in two extreme contact interfaces of no-slip (NS) and full-slip (FS) conditions. Lastly, the effect of the intermediate layer was investigated by quasi-static finite element numerical modeling. The results showed that the maximum value of the axial force under the P-wave exceeds that of the S-wave in both the NS and FS conditions. Also, the amount of bending moment and shear force in both the NS and FS conditions under the S-wave is almost twice the P-wave. In general, the weak interlayer causes a decrease in the maximum axial force and the axial force values in the range of placement of the weak interlayer with the tunnel. Besides, it increases the maximum bending moment and shear force compared to the homogeneous medium. It was also observed that the weak interlayer with low thickness causes unpredictable behavior under S and P-waves. Overall, the presence of a layer with different stiffness led to a significant effect on the TLIFs under S and P-waves and increased the complexity of the dynamic analysis of tunnel lining. Therefore, it should be simulated separately under NS and FS conditions.</div></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"4 1","pages":"Article 100168"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230424000672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper employs analytical and pseudo-static approaches to analyze the tunnel response under the compression (P) and shear (S) waves. In the first step, Einstein and Schwartz’s method is revised for calculating Tunnel Lining Internal Forces (TLIFs) under P-wave. Next, a comprehensive comparison is performed between TLIFs under S and P-waves in two extreme contact interfaces of no-slip (NS) and full-slip (FS) conditions. Lastly, the effect of the intermediate layer was investigated by quasi-static finite element numerical modeling. The results showed that the maximum value of the axial force under the P-wave exceeds that of the S-wave in both the NS and FS conditions. Also, the amount of bending moment and shear force in both the NS and FS conditions under the S-wave is almost twice the P-wave. In general, the weak interlayer causes a decrease in the maximum axial force and the axial force values in the range of placement of the weak interlayer with the tunnel. Besides, it increases the maximum bending moment and shear force compared to the homogeneous medium. It was also observed that the weak interlayer with low thickness causes unpredictable behavior under S and P-waves. Overall, the presence of a layer with different stiffness led to a significant effect on the TLIFs under S and P-waves and increased the complexity of the dynamic analysis of tunnel lining. Therefore, it should be simulated separately under NS and FS conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信