Numerical modeling of the long-term poromechanical performance of a deep enhanced geothermal system in northern Québec

Saeed Vadiee , Biao Li , Jasmin Raymond , Mafalda M. Miranda
{"title":"Numerical modeling of the long-term poromechanical performance of a deep enhanced geothermal system in northern Québec","authors":"Saeed Vadiee ,&nbsp;Biao Li ,&nbsp;Jasmin Raymond ,&nbsp;Mafalda M. Miranda","doi":"10.1016/j.rockmb.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><div>This study numerically investigates the thermo-poromechanical effects in a Canadian geothermal reservoir caused by long-term fluid production and injection. Using finite element modeling, it explores pore pressure diffusion and thermal dynamics, incorporating both the geological structure of the rock mass and faults. The simulations utilize the IAPWS (International Association for the Properties of Water and Steam) equations to model fluid density and viscosity, ensuring realistic representations of heterogeneous pressure fields. The system replicates a doublet configuration within a faulted zone, featuring two hydraulically stimulated fractures. The primary aim is to assess the likelihood of fault reactivation under varying in-situ stress conditions over a 100-year geothermal operation. Results show that stress distribution is largely influenced by thermal stresses along the fluid circulation pathway, with fluid velocity and temperature gradients affecting reservoir stability. Minimal pore pressure changes highlight the dominant role of thermal stresses in controlling fault behavior. The analysis indicates no potential for fault reactivation, as slip tendency values remain below the critical threshold, even when accounting for reduced mechanical properties using the Hoek-Brown criterion. Thermal effects continue to influence the surrounding rock throughout the operational period, suggesting that the reservoir maintains mechanical stability conducive to sustained geothermal production and injection. These findings provide valuable insights into the long-term safety and behavior of geothermal reservoirs, offering important implications for future geothermal energy development and management strategies.</div></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"4 1","pages":"Article 100170"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230424000696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study numerically investigates the thermo-poromechanical effects in a Canadian geothermal reservoir caused by long-term fluid production and injection. Using finite element modeling, it explores pore pressure diffusion and thermal dynamics, incorporating both the geological structure of the rock mass and faults. The simulations utilize the IAPWS (International Association for the Properties of Water and Steam) equations to model fluid density and viscosity, ensuring realistic representations of heterogeneous pressure fields. The system replicates a doublet configuration within a faulted zone, featuring two hydraulically stimulated fractures. The primary aim is to assess the likelihood of fault reactivation under varying in-situ stress conditions over a 100-year geothermal operation. Results show that stress distribution is largely influenced by thermal stresses along the fluid circulation pathway, with fluid velocity and temperature gradients affecting reservoir stability. Minimal pore pressure changes highlight the dominant role of thermal stresses in controlling fault behavior. The analysis indicates no potential for fault reactivation, as slip tendency values remain below the critical threshold, even when accounting for reduced mechanical properties using the Hoek-Brown criterion. Thermal effects continue to influence the surrounding rock throughout the operational period, suggesting that the reservoir maintains mechanical stability conducive to sustained geothermal production and injection. These findings provide valuable insights into the long-term safety and behavior of geothermal reservoirs, offering important implications for future geothermal energy development and management strategies.
曲海北部深部增强型地热系统长期孔隙力学性能的数值模拟
本文对加拿大某地热储层长期采油和注液引起的热-孔隙力学效应进行了数值研究。利用有限元建模,结合岩体和断层的地质结构,探索孔隙压力扩散和热动力学。模拟利用IAPWS(国际水和蒸汽特性协会)方程来模拟流体密度和粘度,确保真实地表示非均匀压力场。该系统在断裂带内复制了一个双重结构,具有两个水力压裂裂缝。主要目的是评估100年地热作业中不同地应力条件下断层重新激活的可能性。结果表明:沿流体循环路径应力分布受热应力影响较大,流体速度和温度梯度影响储层稳定性;最小孔隙压力变化凸显了热应力在控制断层行为中的主导作用。分析表明,即使使用Hoek-Brown准则计算力学性能的降低,由于滑动倾向值仍低于临界阈值,因此没有断层重新激活的可能性。在整个作业期间,热效应持续影响着围岩,这表明储层保持着机械稳定性,有利于持续的地热开采和注入。这些发现为地热储层的长期安全性和行为提供了有价值的见解,对未来地热能源的开发和管理策略具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信