An Optimization of multi-level multi-objective cloud production systems with meta-heuristic algorithms

Mohammadreza Razdar , Mohammad Amin Adibi , Hassan Haleh
{"title":"An Optimization of multi-level multi-objective cloud production systems with meta-heuristic algorithms","authors":"Mohammadreza Razdar ,&nbsp;Mohammad Amin Adibi ,&nbsp;Hassan Haleh","doi":"10.1016/j.dajour.2024.100540","DOIUrl":null,"url":null,"abstract":"<div><div>The inability of small companies to compete with large production systems has led to the sharing resources in cloud production systems among smaller companies to compensate for their production deficiencies. This study proposes a multi-objective, multi-level cloud production system by minimizing the maximum completion time of activities, the costs of the entire cloud production system, and the maximum risk of information disclosure. We use a support vector machine (SVM) to train the input data, including activities, micro activities, and services of production units. The correlation between the trained and predicted data from the machine learning model equals 0.9977, indicating this method’s high accuracy and efficiency. The Lp-Metric, multi-objective grey wolf optimizer (MOGWO), and non-dominated sorting genetic algorithm-II (NSGA-II) algorithms were used to solve the problem using trained input data. The Lp-Metric results show that reducing the completion time of all activities and the maximum risk of information disclosure increases the costs of the entire cloud production system. We also examine the efficiency of the solution methods and demonstrate that MOGWO is more efficient in solving the cloud production system problem.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"14 ","pages":"Article 100540"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662224001449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The inability of small companies to compete with large production systems has led to the sharing resources in cloud production systems among smaller companies to compensate for their production deficiencies. This study proposes a multi-objective, multi-level cloud production system by minimizing the maximum completion time of activities, the costs of the entire cloud production system, and the maximum risk of information disclosure. We use a support vector machine (SVM) to train the input data, including activities, micro activities, and services of production units. The correlation between the trained and predicted data from the machine learning model equals 0.9977, indicating this method’s high accuracy and efficiency. The Lp-Metric, multi-objective grey wolf optimizer (MOGWO), and non-dominated sorting genetic algorithm-II (NSGA-II) algorithms were used to solve the problem using trained input data. The Lp-Metric results show that reducing the completion time of all activities and the maximum risk of information disclosure increases the costs of the entire cloud production system. We also examine the efficiency of the solution methods and demonstrate that MOGWO is more efficient in solving the cloud production system problem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信