An investigation of supervised machine learning models for predicting drivers’ ethical decisions in autonomous vehicles

Amandeep Singh, Yovela Murzello, Sushil Pokhrel, Siby Samuel
{"title":"An investigation of supervised machine learning models for predicting drivers’ ethical decisions in autonomous vehicles","authors":"Amandeep Singh,&nbsp;Yovela Murzello,&nbsp;Sushil Pokhrel,&nbsp;Siby Samuel","doi":"10.1016/j.dajour.2025.100548","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicle-pedestrian interactions in autonomous vehicles (AVs) present complex challenges that require advanced decision-making algorithms. Understanding the factors influencing ethical decision-making (EDM) in critical situations is essential as AVs become more prevalent. This study addresses a gap in AV research by using predictive analytics methods to develop models that assess decision-making outcomes under varying time pressures. We recruited 204 participants from North America, aged 18-30 years and 65 years and above, for an online experiment. Participants viewed video clips from a driving simulator that simulated ethical dilemmas. They had to decide whether the AV should stay in its lane or change lanes by pressing the spacebar. The principal component analysis identified age, distraction, and trust in automation as the key factors influencing decision-making. Several machine learning models were optimized to predict decision outcomes, with the Gaussian Naive Bayes model demonstrating strong performance across different time pressures. Feature importance analysis highlighted the significant roles of age and trust in automation. Partial dependence plots illustrated the interaction between these factors and their influence on decision-making outcomes under time constraints. These findings contribute to the development of personalized decision-making algorithms for AVs. Predictive analytics provides valuable insights into improving AV systems’ safety, trust, and ethical behavior by accounting for individual differences in decision-making.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"14 ","pages":"Article 100548"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle-pedestrian interactions in autonomous vehicles (AVs) present complex challenges that require advanced decision-making algorithms. Understanding the factors influencing ethical decision-making (EDM) in critical situations is essential as AVs become more prevalent. This study addresses a gap in AV research by using predictive analytics methods to develop models that assess decision-making outcomes under varying time pressures. We recruited 204 participants from North America, aged 18-30 years and 65 years and above, for an online experiment. Participants viewed video clips from a driving simulator that simulated ethical dilemmas. They had to decide whether the AV should stay in its lane or change lanes by pressing the spacebar. The principal component analysis identified age, distraction, and trust in automation as the key factors influencing decision-making. Several machine learning models were optimized to predict decision outcomes, with the Gaussian Naive Bayes model demonstrating strong performance across different time pressures. Feature importance analysis highlighted the significant roles of age and trust in automation. Partial dependence plots illustrated the interaction between these factors and their influence on decision-making outcomes under time constraints. These findings contribute to the development of personalized decision-making algorithms for AVs. Predictive analytics provides valuable insights into improving AV systems’ safety, trust, and ethical behavior by accounting for individual differences in decision-making.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信