Haiqing Chang , Haifeng Zhang , Shiqiu Jiang , Juan Hu , Hongli Ma , Bo Cheng , Qiang Wang , Yansong Li
{"title":"Targeting enteric glial CRF-R1/Cx43 attenuates stress-induced accelerated colonic motility","authors":"Haiqing Chang , Haifeng Zhang , Shiqiu Jiang , Juan Hu , Hongli Ma , Bo Cheng , Qiang Wang , Yansong Li","doi":"10.1016/j.jphs.2025.01.009","DOIUrl":null,"url":null,"abstract":"<div><div>Stress triggers disorders in accelerated peristalsis, with corticotropin releasing factor receptor 1 (CRF-R1) playing a pivotal role. Enteric glia cells (EGCs) and glial Cx43 are known to influence gastrointestinal motility, yet their involvement in colonic motor responses to stress remains unclear. Using immunofluorescence and single-cell RNA sequencing data, we identified CRF-R1 expression in EGCs. Male C57BL/6 mice subjected to wrap restraint stress (WRS) revealed stress-induced colonic motility changes. By employing Fluoroacetate, NBI 27914, and Gap26, we elucidated the impact of glial CRF-R1/Cx43 on stress-induced colonic motor responses. Our study demonstrated CRF-R1 expression in EGCs of the small intestine and colon, along with elevated CRF levels and upregulated CRF-R1 in the distal colon under stress. Antagonizing CRF-R1 and disrupting EGC function made mice resistant to colonic stress responses. Mechanistically, increased glial Cx43 expression and activity influenced colonic motor responses in a CRF-R1-dependent manner. Our findings highlight the role of EGC-derived CRF-R1 in stress-induced colonic motor responses via Cx43 activation. Targeting CRF-R1/Cx43 signaling in EGCs may offer a promising approach to mitigate stress-induced colonic transit changes.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"157 3","pages":"Pages 167-178"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000088","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Stress triggers disorders in accelerated peristalsis, with corticotropin releasing factor receptor 1 (CRF-R1) playing a pivotal role. Enteric glia cells (EGCs) and glial Cx43 are known to influence gastrointestinal motility, yet their involvement in colonic motor responses to stress remains unclear. Using immunofluorescence and single-cell RNA sequencing data, we identified CRF-R1 expression in EGCs. Male C57BL/6 mice subjected to wrap restraint stress (WRS) revealed stress-induced colonic motility changes. By employing Fluoroacetate, NBI 27914, and Gap26, we elucidated the impact of glial CRF-R1/Cx43 on stress-induced colonic motor responses. Our study demonstrated CRF-R1 expression in EGCs of the small intestine and colon, along with elevated CRF levels and upregulated CRF-R1 in the distal colon under stress. Antagonizing CRF-R1 and disrupting EGC function made mice resistant to colonic stress responses. Mechanistically, increased glial Cx43 expression and activity influenced colonic motor responses in a CRF-R1-dependent manner. Our findings highlight the role of EGC-derived CRF-R1 in stress-induced colonic motor responses via Cx43 activation. Targeting CRF-R1/Cx43 signaling in EGCs may offer a promising approach to mitigate stress-induced colonic transit changes.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.