Alteration of COX-1 and TLR4 expression in the mouse brain during chronic social defeat stress revealed by Positron Emission Tomography study

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Yumika Motooka , Ryota Shinohara , Shiho Kitaoka , Ai Uryu , Dongrui Li , Hiroyuki Neyama , Yilong Cui , Tatsuya Kida , Wakiko Arakaki , Hisashi Doi , Yasuyoshi Watanabe , Tomoyuki Furuyashiki
{"title":"Alteration of COX-1 and TLR4 expression in the mouse brain during chronic social defeat stress revealed by Positron Emission Tomography study","authors":"Yumika Motooka ,&nbsp;Ryota Shinohara ,&nbsp;Shiho Kitaoka ,&nbsp;Ai Uryu ,&nbsp;Dongrui Li ,&nbsp;Hiroyuki Neyama ,&nbsp;Yilong Cui ,&nbsp;Tatsuya Kida ,&nbsp;Wakiko Arakaki ,&nbsp;Hisashi Doi ,&nbsp;Yasuyoshi Watanabe ,&nbsp;Tomoyuki Furuyashiki","doi":"10.1016/j.jphs.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the recognized roles of neuroinflammation in mental illnesses, PET imaging on currently available biomarkers has limitations due to the lack of evidence demonstrating their relationship to the molecular and cellular events of inflammation associated with the pathology of mental illness. Rodent stress models, such as chronic social defeat stress (SDS), have identified crucial roles for COX-1 and TLR4, which are innate immune molecules, in chronic SDS-induced neuroinflammation and its behavioral consequences. In this study, we performed COX-1 and TLR4 PET imaging at multiple time points during chronic SDS in mice. For COX-1 PET imaging, we used the COX-1 PET probe <em>(S)</em>-[<sup>18</sup>F]KTP-Me. Subchronic SDS transiently increased uptake and slower washout in broad regions of the brain, including the cerebral cortex, hippocampus, striatum, and thalamus. For TLR4 PET imaging, we developed a new BBB-permeable PET probe, [<sup>11</sup>C]<strong>1</strong>, which detected LPS-induced neuroinflammation. Washout of [<sup>11</sup>C]<strong>1</strong> was facilitated in the cerebellum after subchronic and chronic SDS and in the pons-medulla after chronic SDS. Collectively, our findings suggest the potential usefulness of COX-1 and TLR4 PET imaging in visualizing and understanding time-dependent process of neuroinflammation in stress-related mental illnesses.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"157 3","pages":"Pages 156-166"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the recognized roles of neuroinflammation in mental illnesses, PET imaging on currently available biomarkers has limitations due to the lack of evidence demonstrating their relationship to the molecular and cellular events of inflammation associated with the pathology of mental illness. Rodent stress models, such as chronic social defeat stress (SDS), have identified crucial roles for COX-1 and TLR4, which are innate immune molecules, in chronic SDS-induced neuroinflammation and its behavioral consequences. In this study, we performed COX-1 and TLR4 PET imaging at multiple time points during chronic SDS in mice. For COX-1 PET imaging, we used the COX-1 PET probe (S)-[18F]KTP-Me. Subchronic SDS transiently increased uptake and slower washout in broad regions of the brain, including the cerebral cortex, hippocampus, striatum, and thalamus. For TLR4 PET imaging, we developed a new BBB-permeable PET probe, [11C]1, which detected LPS-induced neuroinflammation. Washout of [11C]1 was facilitated in the cerebellum after subchronic and chronic SDS and in the pons-medulla after chronic SDS. Collectively, our findings suggest the potential usefulness of COX-1 and TLR4 PET imaging in visualizing and understanding time-dependent process of neuroinflammation in stress-related mental illnesses.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
104
审稿时长
31 days
期刊介绍: Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信