Modified CEL method for determination of defect formation mechanism in underwater stationary shoulder FSW based on softened pressure-overclosure contact relationship

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Akbar Hosseini, Alireza Fallahi Arezoudar
{"title":"Modified CEL method for determination of defect formation mechanism in underwater stationary shoulder FSW based on softened pressure-overclosure contact relationship","authors":"Akbar Hosseini,&nbsp;Alireza Fallahi Arezoudar","doi":"10.1016/j.finmec.2024.100296","DOIUrl":null,"url":null,"abstract":"<div><div>The Coupled Eulerian-Lagrangian (CEL) method was employed to simulate underwater friction stir welding with a stationary shoulder tool (USSFSW). The governing equations in the CEL method were formulated for FSW based on the immersed boundary method. A new softened pressure-overclosure model was introduced to define contact pressure within the overclosure zone, and an initial nodal clearance control method was implemented to prevent the penetration of Eulerian elements into the Lagrangian domain. For modeling the mechanical and thermal interactions between surfaces, the VUINTERACTION subroutine was utilized. The study focused on the defect formation mechanisms during USSFSW, highlighting the roles of material flow velocity and nodal forces. Simulation results demonstrated close alignment with experimental data, revealing three flow paths that developed during the process, merging in the empty area behind the pin and generating upward material flow. Notably, the maximum flow velocity at the boundary of the third and fourth quadrants ranged from 0.189 to 0.495 m/s, while the overall maximum material flow velocity varied from 0.193 to 0.502 m/s. The nodal force was found to vary between 180 and 600 N; notably, when this force dropped below 200 N, the driving force for material flow decreased, resulting in the inability to fill the cavity behind the tool. Conversely, increasing the nodal force enhanced both backward flow (BF) and horizontal flow (HF), promoting higher material extrusion into the cavity. ​Ultimately, when the flow velocity fell below approximately 0.25 mm/s and the nodal force dropped below about 200 N, cavity defects in USSFSW became inevitable.</div></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"17 ","pages":"Article 100296"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359724000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Coupled Eulerian-Lagrangian (CEL) method was employed to simulate underwater friction stir welding with a stationary shoulder tool (USSFSW). The governing equations in the CEL method were formulated for FSW based on the immersed boundary method. A new softened pressure-overclosure model was introduced to define contact pressure within the overclosure zone, and an initial nodal clearance control method was implemented to prevent the penetration of Eulerian elements into the Lagrangian domain. For modeling the mechanical and thermal interactions between surfaces, the VUINTERACTION subroutine was utilized. The study focused on the defect formation mechanisms during USSFSW, highlighting the roles of material flow velocity and nodal forces. Simulation results demonstrated close alignment with experimental data, revealing three flow paths that developed during the process, merging in the empty area behind the pin and generating upward material flow. Notably, the maximum flow velocity at the boundary of the third and fourth quadrants ranged from 0.189 to 0.495 m/s, while the overall maximum material flow velocity varied from 0.193 to 0.502 m/s. The nodal force was found to vary between 180 and 600 N; notably, when this force dropped below 200 N, the driving force for material flow decreased, resulting in the inability to fill the cavity behind the tool. Conversely, increasing the nodal force enhanced both backward flow (BF) and horizontal flow (HF), promoting higher material extrusion into the cavity. ​Ultimately, when the flow velocity fell below approximately 0.25 mm/s and the nodal force dropped below about 200 N, cavity defects in USSFSW became inevitable.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信