Local heat transfer approach to the start-up analysis of an ultra-thin loop heat pipe

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Luca Pagliarini , Kelvin G. Domiciano , Larissa Krambeck , Fabio Bozzoli , Marcia B.H. Mantelli
{"title":"Local heat transfer approach to the start-up analysis of an ultra-thin loop heat pipe","authors":"Luca Pagliarini ,&nbsp;Kelvin G. Domiciano ,&nbsp;Larissa Krambeck ,&nbsp;Fabio Bozzoli ,&nbsp;Marcia B.H. Mantelli","doi":"10.1016/j.expthermflusci.2025.111421","DOIUrl":null,"url":null,"abstract":"<div><div>Loop heat pipes are two-phase, passive heat transfer devices that exhibit attractive features for thermal management applications, including micro-electronics and battery packs cooling. To enhance the modelling and optimization of such heat transfer devices, a better understanding of their working behaviour is needed, especially in terms of device response to start-up transients. To this aim, a novel local heat transfer approach is proposed and applied to the experimental investigation of a copper loop heat pipe partially filled with ethanol, whose ultra-thin layout has been specifically designed for embedment in electronic devices. The evaporator section is heated by means of an electrical resistance, while the condenser is cooled by free convection. The outer wall temperature along the whole condenser is monitored during the start-up phase of the device at varying heat loads through a medium-wave infrared camera. The temperature signals, referred to six wall sections, are post-processed by means of the Inverse Heat Conduction Problem resolution approach, resulting in the assessment of the heat fluxes exchanged between the working fluid and the device wall over time in both the vapor and liquid lines. The inverse method is successfully validated by means of synthetic data, whereas the experimental procedure is calibrated and verified by preliminary experimental tests. Start-up results show comparable trends in the wall-to-fluid heat flux profiles with the heat input, exhibiting peak values of about 2300 W/m<sup>2</sup>. Through the present non-intrusive technique, fluid velocity in the vapour line is also estimated in the range 0.008 - 0.012 m/s. To the authors’ knowledge, this represents one of the first attempts of characterizing both local heat transfer quantities and inner fluid dynamics in loop heat pipes via experimental approaches.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"163 ","pages":"Article 111421"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725000159","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Loop heat pipes are two-phase, passive heat transfer devices that exhibit attractive features for thermal management applications, including micro-electronics and battery packs cooling. To enhance the modelling and optimization of such heat transfer devices, a better understanding of their working behaviour is needed, especially in terms of device response to start-up transients. To this aim, a novel local heat transfer approach is proposed and applied to the experimental investigation of a copper loop heat pipe partially filled with ethanol, whose ultra-thin layout has been specifically designed for embedment in electronic devices. The evaporator section is heated by means of an electrical resistance, while the condenser is cooled by free convection. The outer wall temperature along the whole condenser is monitored during the start-up phase of the device at varying heat loads through a medium-wave infrared camera. The temperature signals, referred to six wall sections, are post-processed by means of the Inverse Heat Conduction Problem resolution approach, resulting in the assessment of the heat fluxes exchanged between the working fluid and the device wall over time in both the vapor and liquid lines. The inverse method is successfully validated by means of synthetic data, whereas the experimental procedure is calibrated and verified by preliminary experimental tests. Start-up results show comparable trends in the wall-to-fluid heat flux profiles with the heat input, exhibiting peak values of about 2300 W/m2. Through the present non-intrusive technique, fluid velocity in the vapour line is also estimated in the range 0.008 - 0.012 m/s. To the authors’ knowledge, this represents one of the first attempts of characterizing both local heat transfer quantities and inner fluid dynamics in loop heat pipes via experimental approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信