Experimental investigation of fuel adhesion from wall-impinging spray with various injection mass ratios

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Feixiang Chang , Hongliang Luo , Chang Zhai , Yu Jin , Peiyou Xiong , Jun Wang , Bo Song , Jian Zhang , Keiya Nishida
{"title":"Experimental investigation of fuel adhesion from wall-impinging spray with various injection mass ratios","authors":"Feixiang Chang ,&nbsp;Hongliang Luo ,&nbsp;Chang Zhai ,&nbsp;Yu Jin ,&nbsp;Peiyou Xiong ,&nbsp;Jun Wang ,&nbsp;Bo Song ,&nbsp;Jian Zhang ,&nbsp;Keiya Nishida","doi":"10.1016/j.expthermflusci.2024.111403","DOIUrl":null,"url":null,"abstract":"<div><div>In direct injection spark ignition (DISI) engines, interactions between spray and wall surfaces are a common phenomenon. This interaction results in fuel adhering to the surfaces of the cylinder and piston, which in turn greatly influences both combustion efficiency and emission levels. This work explored the influence of various injection mass ratios (D25-75, D50-50, D75-25) on fuel adhesion properties, employing the refractive index matching (RIM) technique in both non-evaporation and evaporation environments. Findings indicated that the split injection mass ratios notably affected fuel adhesion. Under the non-evaporation condition, the highest adhesion mass ratio was observed for D50-50, which was 14.5 %, whereas D25-75 and D75-25 exhibited adhesion mass ratios of 11.9 % and 12.5 % at 60 ms after the start of injection (ASOI). This increase was attributed to two factors: “fuel adhesion thickness” and “penetration velocity”, both of which contributed to enhance splashing and ultimately resulted in the highest adhesion mass of D50-50. However, under the evaporation condition, the adhesion mass of D50-50 declined quickly in comparison to those of other injection mass ratios. This rapid decrease was caused by the uneven adhesion of D50-50, which tended to collapse and evaporate faster at high ambient temperatures, as the uniformity of D50-50 was poorer than those of other injection mass ratios.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"163 ","pages":"Article 111403"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724002723","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In direct injection spark ignition (DISI) engines, interactions between spray and wall surfaces are a common phenomenon. This interaction results in fuel adhering to the surfaces of the cylinder and piston, which in turn greatly influences both combustion efficiency and emission levels. This work explored the influence of various injection mass ratios (D25-75, D50-50, D75-25) on fuel adhesion properties, employing the refractive index matching (RIM) technique in both non-evaporation and evaporation environments. Findings indicated that the split injection mass ratios notably affected fuel adhesion. Under the non-evaporation condition, the highest adhesion mass ratio was observed for D50-50, which was 14.5 %, whereas D25-75 and D75-25 exhibited adhesion mass ratios of 11.9 % and 12.5 % at 60 ms after the start of injection (ASOI). This increase was attributed to two factors: “fuel adhesion thickness” and “penetration velocity”, both of which contributed to enhance splashing and ultimately resulted in the highest adhesion mass of D50-50. However, under the evaporation condition, the adhesion mass of D50-50 declined quickly in comparison to those of other injection mass ratios. This rapid decrease was caused by the uneven adhesion of D50-50, which tended to collapse and evaporate faster at high ambient temperatures, as the uniformity of D50-50 was poorer than those of other injection mass ratios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信