Sequential estimation of high-dimensional signal plus noise models under general elliptical frameworks

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Li Yanpeng , Xie Jiahui , Zhou Guoliang , Zhou Wang
{"title":"Sequential estimation of high-dimensional signal plus noise models under general elliptical frameworks","authors":"Li Yanpeng ,&nbsp;Xie Jiahui ,&nbsp;Zhou Guoliang ,&nbsp;Zhou Wang","doi":"10.1016/j.jmva.2024.105403","DOIUrl":null,"url":null,"abstract":"<div><div>High dimensional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data with noise corrupted and in a streaming manner, such as signals and stocks. In this paper, we develop a sequential method to dynamically update the estimates of signal and noise strength in signal plus noise models. The proposed sequential method is easy to compute based on the stored statistics and the current data point. The consistency and, more importantly, the asymptotic normality of the estimators of signal strength and noise level are demonstrated for high dimensional settings under mild conditions. Simulations and real data examples are further provided to illustrate the practical utility of our proposal.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105403"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24001106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

High dimensional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data with noise corrupted and in a streaming manner, such as signals and stocks. In this paper, we develop a sequential method to dynamically update the estimates of signal and noise strength in signal plus noise models. The proposed sequential method is easy to compute based on the stored statistics and the current data point. The consistency and, more importantly, the asymptotic normality of the estimators of signal strength and noise level are demonstrated for high dimensional settings under mild conditions. Simulations and real data examples are further provided to illustrate the practical utility of our proposal.
一般椭圆框架下高维信号加噪声模型的序贯估计
高维数据分析引起了人们的极大兴趣,但也面临着新的挑战,其中之一是越来越多的数据被噪声破坏,并且以流的方式存在,如信号和股票。在本文中,我们开发了一种序列方法来动态更新信号加噪声模型中信号和噪声强度的估计。该方法基于存储的统计信息和当前数据点,易于计算。在温和的条件下,证明了信号强度和噪声水平估计量的一致性和渐近正态性。仿真和实际数据示例进一步说明了我们的建议的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信