Tree-structured Markov random fields with Poisson marginal distributions

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Benjamin Côté, Hélène Cossette, Etienne Marceau
{"title":"Tree-structured Markov random fields with Poisson marginal distributions","authors":"Benjamin Côté,&nbsp;Hélène Cossette,&nbsp;Etienne Marceau","doi":"10.1016/j.jmva.2025.105418","DOIUrl":null,"url":null,"abstract":"<div><div>A new family of tree-structured Markov random fields for a vector of discrete counting random variables is introduced. According to the characteristics of the family, the marginal distributions of the Markov random fields are all Poisson with the same mean, and are untied from the strength or structure of their built-in dependence. This key feature is uncommon for Markov random fields and most convenient for applications purposes. The specific properties of this new family confer a straightforward sampling procedure and analytic expressions for the joint probability mass function and the joint probability generating function of the vector of counting random variables, thus granting computational methods that scale well to vectors of high dimension. We study the distribution of the sum of random variables constituting a Markov random field from the proposed family, analyze a random variable’s individual contribution to that sum through expected allocations, and establish stochastic orderings to assess a wide understanding of their behavior.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105418"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

A new family of tree-structured Markov random fields for a vector of discrete counting random variables is introduced. According to the characteristics of the family, the marginal distributions of the Markov random fields are all Poisson with the same mean, and are untied from the strength or structure of their built-in dependence. This key feature is uncommon for Markov random fields and most convenient for applications purposes. The specific properties of this new family confer a straightforward sampling procedure and analytic expressions for the joint probability mass function and the joint probability generating function of the vector of counting random variables, thus granting computational methods that scale well to vectors of high dimension. We study the distribution of the sum of random variables constituting a Markov random field from the proposed family, analyze a random variable’s individual contribution to that sum through expected allocations, and establish stochastic orderings to assess a wide understanding of their behavior.
具有泊松边际分布的树结构马尔可夫随机场
介绍了离散计数随机变量向量的一类新的树结构马尔可夫随机场。根据家族的特点,马尔可夫随机场的边缘分布都是具有相同均值的泊松分布,并且从它们的内在依赖的强度或结构中被解耦。这个关键特性对于马尔可夫随机场来说是不常见的,对于应用程序来说是最方便的。这个新家族的特殊性质赋予了一个简单的抽样程序和联合概率质量函数的解析表达式,以及计数随机变量向量的联合概率生成函数,从而赋予了计算方法,可以很好地缩放到高维向量。我们研究了构成马尔科夫随机场的随机变量之和的分布,通过预期分配分析了随机变量对该总和的个人贡献,并建立了随机排序来评估对其行为的广泛理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信