Actively protective combinatorial analysis: A scalable novel method for detecting variants that contribute to reduced disease prevalence in high-risk individuals

J Sardell, S Das, K Taylor, C Stubberfield, A Malinowski, M Strivens, S Gardner
{"title":"Actively protective combinatorial analysis: A scalable novel method for detecting variants that contribute to reduced disease prevalence in high-risk individuals","authors":"J Sardell,&nbsp;S Das,&nbsp;K Taylor,&nbsp;C Stubberfield,&nbsp;A Malinowski,&nbsp;M Strivens,&nbsp;S Gardner","doi":"10.1016/j.ailsci.2025.100125","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel method for routinely identifying disease resilience associations that offers powerful insights for the discovery of a new class of disease protective targets. We show how this can be used to identify mechanisms in the background of normal cellular biology that work to slow or stop progression of complex, chronic diseases.</div><div>Actively protective combinatorial analysis identifies combinations of features that contribute to reducing risk of disease in individuals who remain healthy even though their genomic profile suggests that they have high risk of developing disease. These protective signatures can potentially be used to identify novel drug targets, pharmacogenomic and/or therapeutic mRNA opportunities and to better stratify patients by overall disease risk and mechanistic subtype.</div><div>We describe the method and illustrate how it offers increased power for detecting disease-associated genetic variants relative to traditional methods. We exemplify this by identifying individuals who remain healthy despite possessing several disease signatures associated with increased risk of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or amyotrophic lateral sclerosis (ALS). We then identify combinations of SNP-genotypes significantly associated with reduced disease prevalence in these high-risk protected cohorts.</div><div>We discuss how actively protective combinatorial analysis generates novel insights into the genetic drivers of established disease biology and detects gene-disease associations missed by standard statistical approaches such as meta-GWAS. The results support the mechanism of action hypotheses identified in our original causative disease analyses. They also illustrate the potential for development of precision medicine approaches that can increase healthspan by reducing the progression of disease.</div></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"7 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318525000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel method for routinely identifying disease resilience associations that offers powerful insights for the discovery of a new class of disease protective targets. We show how this can be used to identify mechanisms in the background of normal cellular biology that work to slow or stop progression of complex, chronic diseases.
Actively protective combinatorial analysis identifies combinations of features that contribute to reducing risk of disease in individuals who remain healthy even though their genomic profile suggests that they have high risk of developing disease. These protective signatures can potentially be used to identify novel drug targets, pharmacogenomic and/or therapeutic mRNA opportunities and to better stratify patients by overall disease risk and mechanistic subtype.
We describe the method and illustrate how it offers increased power for detecting disease-associated genetic variants relative to traditional methods. We exemplify this by identifying individuals who remain healthy despite possessing several disease signatures associated with increased risk of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or amyotrophic lateral sclerosis (ALS). We then identify combinations of SNP-genotypes significantly associated with reduced disease prevalence in these high-risk protected cohorts.
We discuss how actively protective combinatorial analysis generates novel insights into the genetic drivers of established disease biology and detects gene-disease associations missed by standard statistical approaches such as meta-GWAS. The results support the mechanism of action hypotheses identified in our original causative disease analyses. They also illustrate the potential for development of precision medicine approaches that can increase healthspan by reducing the progression of disease.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信