Ana Lavalle , Alejandro Maté , Maribel Yasmina Santos , Pedro Guimarães , Juan Trujillo , Antonina Santos
{"title":"A methodology for the systematic design of storytelling dashboards applied to Industry 4.0","authors":"Ana Lavalle , Alejandro Maté , Maribel Yasmina Santos , Pedro Guimarães , Juan Trujillo , Antonina Santos","doi":"10.1016/j.datak.2025.102410","DOIUrl":null,"url":null,"abstract":"<div><div>Dashboards are popular tools for presenting key insights to decision-makers by translating large volumes of data into clear information. However, while individual visualizations may effectively answer specific questions, they often fail to connect in a way that conveys the overall narrative, leaving decision-makers without a cohesive understanding of the area under analysis.</div><div>This paper presents a novel methodology for the systematic design of holistic dashboards, moving from analytical requirements to storytelling dashboards. Our approach ensures that all visualizations are aligned with the analytical goals of decision-makers. It includes several key steps: capturing analytical requirements through the i* framework; structuring and refining these requirements into a tree model to reflect the decision-maker’s mental analysis; identifying and preparing relevant data; capturing the key concepts and relationships for the composition of the cohesive storytelling dashboard through a novel storytelling conceptual model; finally, implementing and integrating the visualizations into the dashboard, ensuring coherence and alignment with the decision-maker’s needs. Our methodology has been applied in real-world industrial environments. We evaluated its impact through a controlled experiment. The findings show that storytelling dashboards significantly improve data interpretation, reduce misinterpretations, and enhance the overall user experience compared to traditional dashboards.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"156 ","pages":"Article 102410"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000059","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Dashboards are popular tools for presenting key insights to decision-makers by translating large volumes of data into clear information. However, while individual visualizations may effectively answer specific questions, they often fail to connect in a way that conveys the overall narrative, leaving decision-makers without a cohesive understanding of the area under analysis.
This paper presents a novel methodology for the systematic design of holistic dashboards, moving from analytical requirements to storytelling dashboards. Our approach ensures that all visualizations are aligned with the analytical goals of decision-makers. It includes several key steps: capturing analytical requirements through the i* framework; structuring and refining these requirements into a tree model to reflect the decision-maker’s mental analysis; identifying and preparing relevant data; capturing the key concepts and relationships for the composition of the cohesive storytelling dashboard through a novel storytelling conceptual model; finally, implementing and integrating the visualizations into the dashboard, ensuring coherence and alignment with the decision-maker’s needs. Our methodology has been applied in real-world industrial environments. We evaluated its impact through a controlled experiment. The findings show that storytelling dashboards significantly improve data interpretation, reduce misinterpretations, and enhance the overall user experience compared to traditional dashboards.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.