Linear stability on transpiration effect of self-similar boundary layer flow for non-Newtonian fluids over a moving wedge

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ramesh B. Kudenatti , Bharathi M.C. , Noor-E-Misbah
{"title":"Linear stability on transpiration effect of self-similar boundary layer flow for non-Newtonian fluids over a moving wedge","authors":"Ramesh B. Kudenatti ,&nbsp;Bharathi M.C. ,&nbsp;Noor-E-Misbah","doi":"10.1016/j.matcom.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><div>The two-dimensional boundary layer flow of non-Newtonian fluid over a wedge is numerically studied, in which the wedge is considered to be permeable and moving opposite or in the direction of the mainstream. The non-Newtonian fluid model is described by the power law and Carreau fluid. The equations governing fluid flow are nonlinear partial differential equations, which are then converted into ordinary differential equations for each fluid upon imposing suitable similarity transformations and assuming both wedge and mainstream velocity are expected to obey the power of distance. The Chebyshev collocation and shooting methods are utilized for the solutions to the boundary layer problem. Numerical results have shown that for a certain range of parameters, the solutions are not unique and do not exist to the model, leading to double solutions that are seen to satisfy the boundary conditions. This prompts us to assess the stability of the solutions as to which of these is practically encountered. The linear stability analysis applied on these double solutions shows that the first solution is always stable and hence practically realizable. The various physical reasons behind these results are discussed in some detail.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"231 ","pages":"Pages 46-61"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004579","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The two-dimensional boundary layer flow of non-Newtonian fluid over a wedge is numerically studied, in which the wedge is considered to be permeable and moving opposite or in the direction of the mainstream. The non-Newtonian fluid model is described by the power law and Carreau fluid. The equations governing fluid flow are nonlinear partial differential equations, which are then converted into ordinary differential equations for each fluid upon imposing suitable similarity transformations and assuming both wedge and mainstream velocity are expected to obey the power of distance. The Chebyshev collocation and shooting methods are utilized for the solutions to the boundary layer problem. Numerical results have shown that for a certain range of parameters, the solutions are not unique and do not exist to the model, leading to double solutions that are seen to satisfy the boundary conditions. This prompts us to assess the stability of the solutions as to which of these is practically encountered. The linear stability analysis applied on these double solutions shows that the first solution is always stable and hence practically realizable. The various physical reasons behind these results are discussed in some detail.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信