Determination of heat input impact on residual stress, microstructure and mechanical characteristics of welded ferrite-pearlite (α-P) steel joints by using taguchi optimization approach

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nagaraju Doredla, Senthil Kumar N
{"title":"Determination of heat input impact on residual stress, microstructure and mechanical characteristics of welded ferrite-pearlite (α-P) steel joints by using taguchi optimization approach","authors":"Nagaraju Doredla,&nbsp;Senthil Kumar N","doi":"10.1016/j.jajp.2024.100278","DOIUrl":null,"url":null,"abstract":"<div><div>Ferrite-Pearlite (α-P) steels like E350 steel were extensively used in pre-engineered structures like industrial warehouses, bridges, etc., owing to their special ductility property. Submerged arc welding is highly efficient in welding long-span prefabricated structures. In this paper, weld overlay and butt weld experimental investigations were performed to optimise the welding process by understanding the influence of heat input on residual stress generation, weld efficiency, microstructural and mechanical characteristics of the weld joint to match the filler wire with the base material characteristics. Trail runs were conducted using the Taguchi design optimisation approach. Taguchi method is useful to standardise and simplify the use of design of experiments. The weld quality was evaluated using non-destructive evaluations. Residual stress was tensile near the weld and transitioned to compressive further from the root. The intensity of residual stress decreased gradually with an increase in transverse distance from the weld root. Acicular ferrite, polygonal ferrite, and traces of lath bainite microstructure were observed in the weld zone. The weld microstructure became coarser toward the melting boundary of the welded joint with an increase in heat input greater than 1.09 kJ/mm. A notable decrease in weld brittleness was observed with an increase in heat input from 1.09–1.37 kJ/mm, and the fracture initiated away from the weld with ductile and quasi-ductile cleavages. The overall microstructure and mechanical characteristics of the welded joint were improved at a controlled heat input of 1.09–1.37 kJ/mm.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100278"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferrite-Pearlite (α-P) steels like E350 steel were extensively used in pre-engineered structures like industrial warehouses, bridges, etc., owing to their special ductility property. Submerged arc welding is highly efficient in welding long-span prefabricated structures. In this paper, weld overlay and butt weld experimental investigations were performed to optimise the welding process by understanding the influence of heat input on residual stress generation, weld efficiency, microstructural and mechanical characteristics of the weld joint to match the filler wire with the base material characteristics. Trail runs were conducted using the Taguchi design optimisation approach. Taguchi method is useful to standardise and simplify the use of design of experiments. The weld quality was evaluated using non-destructive evaluations. Residual stress was tensile near the weld and transitioned to compressive further from the root. The intensity of residual stress decreased gradually with an increase in transverse distance from the weld root. Acicular ferrite, polygonal ferrite, and traces of lath bainite microstructure were observed in the weld zone. The weld microstructure became coarser toward the melting boundary of the welded joint with an increase in heat input greater than 1.09 kJ/mm. A notable decrease in weld brittleness was observed with an increase in heat input from 1.09–1.37 kJ/mm, and the fracture initiated away from the weld with ductile and quasi-ductile cleavages. The overall microstructure and mechanical characteristics of the welded joint were improved at a controlled heat input of 1.09–1.37 kJ/mm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信