Autonomous vehicle safety: An advanced bagging classifier technique for crash injury prediction

Sai Sneha Channamallu, Deema Almaskati, Sharareh Kermanshachi, Apurva Pamidimukkala
{"title":"Autonomous vehicle safety: An advanced bagging classifier technique for crash injury prediction","authors":"Sai Sneha Channamallu,&nbsp;Deema Almaskati,&nbsp;Sharareh Kermanshachi,&nbsp;Apurva Pamidimukkala","doi":"10.1016/j.multra.2025.100189","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing utilization of autonomous vehicles (AVs) makes it critical to understand and mitigate their involvement in traffic accidents. This study, therefore, addresses a significant gap in the research on AV safety by focusing on predicting the possibility of injuries in AV-involved crashes. The California Department of Motor Vehicles’ comprehensive dataset of accidents that occurred from 2014 to May 2024 was utilized, and advanced machine learning techniques were applied to develop a model capable of predicting the outcomes of accidents involving AVs. The study found that the bagging classifier model outperforms other models in reliably predicting and identifying severe crashes and minimizing misclassification. Evaluations made through precision-recall, validation, and learning curves confirm the model's robustness, ability to generalize across data subsets, and effectiveness in increasing training data. Key predictors of crash severity include the extent of damage to the AV, vehicle type, manufacturer, and presence of a traffic signal. The study highlights the importance of tailored safety measures, robust safety mechanisms, and advanced traffic management systems to mitigate crash severity. The real-world application of this advanced model promises substantial benefits for vehicle manufacturers, urban planners, policymakers, and end-users, and will contribute to safer roadways.</div></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":"4 1","pages":"Article 100189"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586325000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing utilization of autonomous vehicles (AVs) makes it critical to understand and mitigate their involvement in traffic accidents. This study, therefore, addresses a significant gap in the research on AV safety by focusing on predicting the possibility of injuries in AV-involved crashes. The California Department of Motor Vehicles’ comprehensive dataset of accidents that occurred from 2014 to May 2024 was utilized, and advanced machine learning techniques were applied to develop a model capable of predicting the outcomes of accidents involving AVs. The study found that the bagging classifier model outperforms other models in reliably predicting and identifying severe crashes and minimizing misclassification. Evaluations made through precision-recall, validation, and learning curves confirm the model's robustness, ability to generalize across data subsets, and effectiveness in increasing training data. Key predictors of crash severity include the extent of damage to the AV, vehicle type, manufacturer, and presence of a traffic signal. The study highlights the importance of tailored safety measures, robust safety mechanisms, and advanced traffic management systems to mitigate crash severity. The real-world application of this advanced model promises substantial benefits for vehicle manufacturers, urban planners, policymakers, and end-users, and will contribute to safer roadways.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信