Indian SUMO traffic scenario-based misbehaviour detection dataset for connected vehicles

Umesh Bodkhe , Sudeep Tanwar
{"title":"Indian SUMO traffic scenario-based misbehaviour detection dataset for connected vehicles","authors":"Umesh Bodkhe ,&nbsp;Sudeep Tanwar","doi":"10.1016/j.multra.2024.100148","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Vehicles (IoV) plays a crucial role in intelligent transportation systems (ITS) by enabling communication between interconnected vehicles and supporting infrastructure. Connected vehicles utilize basic safety messages (BSMs) to exchange kinematic data, such as vehicle acceleration, velocity, position, and direction, with neighbouring nodes in the ITS network to enhance road safety. However, these BSMs are susceptible to various security attacks, which disrupt the collaborative functionality of ITS, potentially resulting in accidents or traffic congestion. The scientific community has proposed numerous security mechanisms to protect BSMs. The majority of these assessments have been conducted utilizing either the vehicular reference misbehaviour (VeReMi) dataset or the VeReMi extension dataset. These datasets are specifically designed for the Luxembourg SUMO Traffic (LuST) scenario and are suitable for only evaluating misbehaviour detection methods within a European ITS context. However, there is a notable scarcity of publicly accessible misbehaviour datasets that faithfully depict Indian ITS scenarios. To overcome this limitation, we introduce a new scenario, i.e., the Ahmedabad SUMO Traffic (AhmST) scenario, based on the city of Ahmedabad in Gujarat, India. Moreover, we also introduce the Indian dataset for misbehaviour analysis (AhmST). The proposed dataset includes cases of false data injections affecting the vehicle position, heading, and speed information within BSMs. Finally, we compare the AhmST dataset with recent datasets, assess the proposed dataset using various machine learning techniques and present an optimized model with improved accuracy.</div></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":"4 1","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586324000297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Vehicles (IoV) plays a crucial role in intelligent transportation systems (ITS) by enabling communication between interconnected vehicles and supporting infrastructure. Connected vehicles utilize basic safety messages (BSMs) to exchange kinematic data, such as vehicle acceleration, velocity, position, and direction, with neighbouring nodes in the ITS network to enhance road safety. However, these BSMs are susceptible to various security attacks, which disrupt the collaborative functionality of ITS, potentially resulting in accidents or traffic congestion. The scientific community has proposed numerous security mechanisms to protect BSMs. The majority of these assessments have been conducted utilizing either the vehicular reference misbehaviour (VeReMi) dataset or the VeReMi extension dataset. These datasets are specifically designed for the Luxembourg SUMO Traffic (LuST) scenario and are suitable for only evaluating misbehaviour detection methods within a European ITS context. However, there is a notable scarcity of publicly accessible misbehaviour datasets that faithfully depict Indian ITS scenarios. To overcome this limitation, we introduce a new scenario, i.e., the Ahmedabad SUMO Traffic (AhmST) scenario, based on the city of Ahmedabad in Gujarat, India. Moreover, we also introduce the Indian dataset for misbehaviour analysis (AhmST). The proposed dataset includes cases of false data injections affecting the vehicle position, heading, and speed information within BSMs. Finally, we compare the AhmST dataset with recent datasets, assess the proposed dataset using various machine learning techniques and present an optimized model with improved accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信