Qing Cheng , Qianqian Liu , Wenbin Chen , Jie Shen
{"title":"A new flow dynamic approach for Wasserstein gradient flows","authors":"Qing Cheng , Qianqian Liu , Wenbin Chen , Jie Shen","doi":"10.1016/j.jcp.2024.113696","DOIUrl":null,"url":null,"abstract":"<div><div>We develop in this paper a new regularized flow dynamic approach to construct efficient numerical schemes for Wasserstein gradient flows in Lagrangian coordinates. Instead of approximating the Wasserstein distance which needs to solve constrained minimization problems, we reformulate the problem using the Benamou-Brenier's flow dynamic approach, leading to algorithms which only need to solve unconstrained minimization problem in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> distance. Our schemes automatically inherit some essential properties of Wasserstein gradient systems such as positivity-preserving, mass conservative and energy dissipation. We present ample numerical simulations of Porous-Medium equations, Keller-Segel equations and Aggregation equations to validate the accuracy and stability of the proposed schemes. Compared to numerical schemes in Eulerian coordinates, our new schemes can capture sharp interfaces for various Wasserstein gradient flows using relatively smaller number of unknowns.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"524 ","pages":"Article 113696"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124009446","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop in this paper a new regularized flow dynamic approach to construct efficient numerical schemes for Wasserstein gradient flows in Lagrangian coordinates. Instead of approximating the Wasserstein distance which needs to solve constrained minimization problems, we reformulate the problem using the Benamou-Brenier's flow dynamic approach, leading to algorithms which only need to solve unconstrained minimization problem in distance. Our schemes automatically inherit some essential properties of Wasserstein gradient systems such as positivity-preserving, mass conservative and energy dissipation. We present ample numerical simulations of Porous-Medium equations, Keller-Segel equations and Aggregation equations to validate the accuracy and stability of the proposed schemes. Compared to numerical schemes in Eulerian coordinates, our new schemes can capture sharp interfaces for various Wasserstein gradient flows using relatively smaller number of unknowns.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.