Macromolecular interaction mechanism of the bacteriocin EntDD14 with the receptor binding domain (RBD) for the inhibition of SARS-CoV-2 and the JN.1 variant: Biomedical study based on elastic networks, stochastic Markov models, and macromolecular volumetric analysis

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Luis Moncayo Molina , María Erlinda Aguaiza Pichazaca , José Isidro Yamasqui Padilla , María Eufemia Pinos Calle , Karla Maribel Yamasqui Pinos , Arlene Cardozo Urdaneta , Carla Lossada , Yovani Marrero-Ponce , Felix Martinez-Rios , Ysaías J. Alvarado , Aleivi Pérez , Lenin González-Paz
{"title":"Macromolecular interaction mechanism of the bacteriocin EntDD14 with the receptor binding domain (RBD) for the inhibition of SARS-CoV-2 and the JN.1 variant: Biomedical study based on elastic networks, stochastic Markov models, and macromolecular volumetric analysis","authors":"Luis Moncayo Molina ,&nbsp;María Erlinda Aguaiza Pichazaca ,&nbsp;José Isidro Yamasqui Padilla ,&nbsp;María Eufemia Pinos Calle ,&nbsp;Karla Maribel Yamasqui Pinos ,&nbsp;Arlene Cardozo Urdaneta ,&nbsp;Carla Lossada ,&nbsp;Yovani Marrero-Ponce ,&nbsp;Felix Martinez-Rios ,&nbsp;Ysaías J. Alvarado ,&nbsp;Aleivi Pérez ,&nbsp;Lenin González-Paz","doi":"10.1016/j.bpc.2024.107388","DOIUrl":null,"url":null,"abstract":"<div><div>Bacteriocins, a class of molecules produced by bacteria, exhibit potent antimicrobial properties, including antiviral activities. The urgent need for treatments against SARS-CoV-2 has proposed bacteriocins such as enterocin DD14 (EntDD14) as potential therapeutic agents. However, the mechanism of macromolecular interaction of EntDD14 for the inhibition of SARS-CoV-2 is not yet fully understood, and its efficacy against variants like JN.1 has not been completely established. To address these knowledge gaps, biocomputational analyses were employed using a diverse set of tools, including Markov state models and volumetric analyses. This analysis revealed a favorable interaction between EntDD14 and the receptor-binding domain (RBD) of SARS-CoV-2. Furthermore, it was found that EntDD14 induces changes in the flexibility of the RBD and alters the distribution and size of its internal cavities, particularly in the JN.1 variant. These findings align with experimental observations and support the inhibitory mechanism of EntDD14 against SARS-CoV-2. Additionally, they suggest that EntDD14 may possess a broader spectrum of action, encompassing the JN.1 variant. This study paves the way for future investigations and therapeutic applications, encouraging further exploration of the antiviral activity of bacteriocins like EntDD14 against variants of concern like JN.1. However, additional experimental demonstrations are warranted to substantiate these findings.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107388"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224002175","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteriocins, a class of molecules produced by bacteria, exhibit potent antimicrobial properties, including antiviral activities. The urgent need for treatments against SARS-CoV-2 has proposed bacteriocins such as enterocin DD14 (EntDD14) as potential therapeutic agents. However, the mechanism of macromolecular interaction of EntDD14 for the inhibition of SARS-CoV-2 is not yet fully understood, and its efficacy against variants like JN.1 has not been completely established. To address these knowledge gaps, biocomputational analyses were employed using a diverse set of tools, including Markov state models and volumetric analyses. This analysis revealed a favorable interaction between EntDD14 and the receptor-binding domain (RBD) of SARS-CoV-2. Furthermore, it was found that EntDD14 induces changes in the flexibility of the RBD and alters the distribution and size of its internal cavities, particularly in the JN.1 variant. These findings align with experimental observations and support the inhibitory mechanism of EntDD14 against SARS-CoV-2. Additionally, they suggest that EntDD14 may possess a broader spectrum of action, encompassing the JN.1 variant. This study paves the way for future investigations and therapeutic applications, encouraging further exploration of the antiviral activity of bacteriocins like EntDD14 against variants of concern like JN.1. However, additional experimental demonstrations are warranted to substantiate these findings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信