A branch-and-cut-and-price algorithm for shared mobility considering customer satisfaction

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Min Xu
{"title":"A branch-and-cut-and-price algorithm for shared mobility considering customer satisfaction","authors":"Min Xu","doi":"10.1016/j.cor.2025.106998","DOIUrl":null,"url":null,"abstract":"<div><div>This study determines the exact optimal fleet size, ride-matching patterns, and vehicle routes for shared mobility services (SMS) that maximize the profit of service operators considering ride-pooling and customer satisfaction. We make the first attempt to consider a nonlinear multivariate customer satisfaction function with respect to the features of the riders and the system under a ‘two riders-single vehicle’ ride-pooling scenario in a special case of dial-a-ride problem (DARP). A set packing model and a tailored branch-and-cut-and-price (BCP) approach are proposed to find the exact optimal solution of the problem. Unlike existing exact solution methods for DARP, we exploit the characteristic of the ride-pooling scenario and decompose the ride matching and vehicle routing in an effective two-phase method to solve the pricing problem of the BCP approach. Particularly, in Phase 1, feasible matching patterns subject to practical constraints are identified. In Phase 2, a heuristic and an exact label-correcting method with a bounded bi-directional search are sequentially employed to solve a new variant of elementary shortest path problem with time window (ESPPTW) in a network constructed upon rides and feasible ride matching patterns identified in Phase 1. The labeling methods are further accelerated by a strengthened dominance test, the aggregate extension to other depots, and the decremental search space. Valid inequalities are also incorporated to further improve the upper bound. The proposed solution method is evaluated in randomly generated instances and the instances created from the real mobility data of Didi. Managerial insights are generated through impact analysis.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"177 ","pages":"Article 106998"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825000267","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study determines the exact optimal fleet size, ride-matching patterns, and vehicle routes for shared mobility services (SMS) that maximize the profit of service operators considering ride-pooling and customer satisfaction. We make the first attempt to consider a nonlinear multivariate customer satisfaction function with respect to the features of the riders and the system under a ‘two riders-single vehicle’ ride-pooling scenario in a special case of dial-a-ride problem (DARP). A set packing model and a tailored branch-and-cut-and-price (BCP) approach are proposed to find the exact optimal solution of the problem. Unlike existing exact solution methods for DARP, we exploit the characteristic of the ride-pooling scenario and decompose the ride matching and vehicle routing in an effective two-phase method to solve the pricing problem of the BCP approach. Particularly, in Phase 1, feasible matching patterns subject to practical constraints are identified. In Phase 2, a heuristic and an exact label-correcting method with a bounded bi-directional search are sequentially employed to solve a new variant of elementary shortest path problem with time window (ESPPTW) in a network constructed upon rides and feasible ride matching patterns identified in Phase 1. The labeling methods are further accelerated by a strengthened dominance test, the aggregate extension to other depots, and the decremental search space. Valid inequalities are also incorporated to further improve the upper bound. The proposed solution method is evaluated in randomly generated instances and the instances created from the real mobility data of Didi. Managerial insights are generated through impact analysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信