A novel communication-efficient heterogeneous federated positive and unlabeled learning method for credit scoring

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yongqin Qiu , Yuanxing Chen , Kan Fang , Kuangnan Fang
{"title":"A novel communication-efficient heterogeneous federated positive and unlabeled learning method for credit scoring","authors":"Yongqin Qiu ,&nbsp;Yuanxing Chen ,&nbsp;Kan Fang ,&nbsp;Kuangnan Fang","doi":"10.1016/j.cor.2025.106982","DOIUrl":null,"url":null,"abstract":"<div><div>Customer records include only customers in default (positive samples) and rejected customers (unlabeled samples), or positive and unlabeled (PU) data, which is a common scenario in emerging financial institutions. However, building credit scoring models using multiple small sample PU datasets with high dimensionality poses significant challenges, especially in light of the privacy constraints associated with transferring raw data. To tackle these challenges, this paper introduces a novel methodology called heterogeneous federated PU learning. This approach utilizes a fused penalty function to automatically divide coefficients into multiple clusters, while an efficient proximal gradient descent algorithm is introduced for model training, relying solely on gradients from local servers. Theoretical analysis establishes the oracle property of our proposed estimator. The simulation results show that, in terms of variable selection, parameter estimation, and prediction performance, our method is close to the Oracle estimator and outperforms the other alternatives. Empirical results indicate that our method can improve prediction performance and facilitate the identification of heterogeneity across datasets. Moreover, the estimated clustering structures further reveal that provinces that are geographically closer exhibit greater similarity in credit risk. This implies that the proposed methodology can effectively assist nascent financial institutions in identifying differences in risk factors across datasets and enhancing predictive accuracy.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"177 ","pages":"Article 106982"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825000103","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Customer records include only customers in default (positive samples) and rejected customers (unlabeled samples), or positive and unlabeled (PU) data, which is a common scenario in emerging financial institutions. However, building credit scoring models using multiple small sample PU datasets with high dimensionality poses significant challenges, especially in light of the privacy constraints associated with transferring raw data. To tackle these challenges, this paper introduces a novel methodology called heterogeneous federated PU learning. This approach utilizes a fused penalty function to automatically divide coefficients into multiple clusters, while an efficient proximal gradient descent algorithm is introduced for model training, relying solely on gradients from local servers. Theoretical analysis establishes the oracle property of our proposed estimator. The simulation results show that, in terms of variable selection, parameter estimation, and prediction performance, our method is close to the Oracle estimator and outperforms the other alternatives. Empirical results indicate that our method can improve prediction performance and facilitate the identification of heterogeneity across datasets. Moreover, the estimated clustering structures further reveal that provinces that are geographically closer exhibit greater similarity in credit risk. This implies that the proposed methodology can effectively assist nascent financial institutions in identifying differences in risk factors across datasets and enhancing predictive accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信