Integer programming approaches for distributionally robust chance constraints with adjustable risks

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yiling Zhang
{"title":"Integer programming approaches for distributionally robust chance constraints with adjustable risks","authors":"Yiling Zhang","doi":"10.1016/j.cor.2025.106974","DOIUrl":null,"url":null,"abstract":"<div><div>We study distributionally robust chance-constrained programs (DRCCPs) with individual chance constraints under a Wasserstein ambiguity. The DRCCPs treat the risk tolerances associated with the distributionally robust chance constraints (DRCCs) as decision variables to trade off between the system cost and risk of violations by penalizing the risk tolerances in the objective function. We develop integer programming approaches for individual chance constraints with uncertainty either on the right-hand side or on the left-hand side. In particular, we derive mixed integer programming reformulations for the two types of uncertainty to determine the optimal risk tolerance for the chance constraint. Valid inequalities are derived to strengthen the formulations. We test diverse instances of diverse sizes.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"177 ","pages":"Article 106974"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825000024","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We study distributionally robust chance-constrained programs (DRCCPs) with individual chance constraints under a Wasserstein ambiguity. The DRCCPs treat the risk tolerances associated with the distributionally robust chance constraints (DRCCs) as decision variables to trade off between the system cost and risk of violations by penalizing the risk tolerances in the objective function. We develop integer programming approaches for individual chance constraints with uncertainty either on the right-hand side or on the left-hand side. In particular, we derive mixed integer programming reformulations for the two types of uncertainty to determine the optimal risk tolerance for the chance constraint. Valid inequalities are derived to strengthen the formulations. We test diverse instances of diverse sizes.
具有可调风险的分布鲁棒机会约束的整数规划方法
本文研究了Wasserstein歧义下具有个体机会约束的分布鲁棒机会约束规划(drccp)。分布式鲁棒机会约束将与分布式鲁棒机会约束相关的风险容忍度作为决策变量,通过惩罚目标函数中的风险容忍度在系统成本和违规风险之间进行权衡。我们开发了整数规划方法,用于具有不确定性的个体机会约束,无论是在右侧还是在左侧。特别地,我们导出了两种不确定性的混合整数规划重新公式,以确定机会约束下的最优风险容忍度。推导了有效的不等式来加强公式。我们测试不同大小的不同实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信