Optimization of novel coil structure parameters for controlling Al/Fe magnetic pulse welding process

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Xi Jiang , Haiping Yu , Haohua Li
{"title":"Optimization of novel coil structure parameters for controlling Al/Fe magnetic pulse welding process","authors":"Xi Jiang ,&nbsp;Haiping Yu ,&nbsp;Haohua Li","doi":"10.1016/j.jmapro.2024.12.044","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic pulse welding (MPW) for dissimilar sheet metals holds significant industrial potential as an environmentally friendly and efficient method. The process and results of MPW are highly dependent on the discharge parameters of MPW equipment. However, the development of excellent performance equipment is challenging and costly, limiting the widespread industrial application of MPW. A novel coil with the capability of amplifying current is proposed in this study, thereby mitigating the stringent requirements on MPW equipment. Firstly, the theoretical model was established to assess the effect of coil structure parameters on RLC (resistance, inductance, and capacitance) within the MPW discharge system and the magnetic pressure exerted on the sheet metal. Subsequently, numerical simulations were employed to investigate the variation trends of current density, Lorentz force, and collision parameters of the flyer sheet basing on different coil structures during the MPW process. Given that coil with 4 turns, diameter of 200 mm and pitch of 30 mm achieves a 3.1 times current amplification and a collision speed of 383.7 m/s of the flyer sheet at 9.8 kJ, while maintaining certain structural stability, the experiments were conducted. Experimental results confirmed that the small error in numerical simulation results. The metallurgical welding features, including the waveform interface, amorphous layer, and element diffusion, were observed at the 1060-DP450 weld interface achieved at 9.8 kJ. Nanoindentation results indicated that work hardening caused a higher hardness (max: 1.808 GPa) near the interface. Mechanical testing of joints welded at different energy levels (6.05–9.8 kJ) revealed that when the discharge energy exceeded 8.45 kJ, the fracture location of the joint occurs in the 1060 rather than the welding area, which is lower than the energy requirement for welding sheets of similar strength levels using traditional coils. Therefore, the novel coil structure proposed in this study reduces the difficulty of the MPW process while ensuring excellent joint performance, which is beneficial for the further industrial application of MPW technology.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"134 ","pages":"Pages 117-134"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524013239","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic pulse welding (MPW) for dissimilar sheet metals holds significant industrial potential as an environmentally friendly and efficient method. The process and results of MPW are highly dependent on the discharge parameters of MPW equipment. However, the development of excellent performance equipment is challenging and costly, limiting the widespread industrial application of MPW. A novel coil with the capability of amplifying current is proposed in this study, thereby mitigating the stringent requirements on MPW equipment. Firstly, the theoretical model was established to assess the effect of coil structure parameters on RLC (resistance, inductance, and capacitance) within the MPW discharge system and the magnetic pressure exerted on the sheet metal. Subsequently, numerical simulations were employed to investigate the variation trends of current density, Lorentz force, and collision parameters of the flyer sheet basing on different coil structures during the MPW process. Given that coil with 4 turns, diameter of 200 mm and pitch of 30 mm achieves a 3.1 times current amplification and a collision speed of 383.7 m/s of the flyer sheet at 9.8 kJ, while maintaining certain structural stability, the experiments were conducted. Experimental results confirmed that the small error in numerical simulation results. The metallurgical welding features, including the waveform interface, amorphous layer, and element diffusion, were observed at the 1060-DP450 weld interface achieved at 9.8 kJ. Nanoindentation results indicated that work hardening caused a higher hardness (max: 1.808 GPa) near the interface. Mechanical testing of joints welded at different energy levels (6.05–9.8 kJ) revealed that when the discharge energy exceeded 8.45 kJ, the fracture location of the joint occurs in the 1060 rather than the welding area, which is lower than the energy requirement for welding sheets of similar strength levels using traditional coils. Therefore, the novel coil structure proposed in this study reduces the difficulty of the MPW process while ensuring excellent joint performance, which is beneficial for the further industrial application of MPW technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信