Principal component flow map learning of PDEs from incomplete, limited, and noisy data

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Victor Churchill
{"title":"Principal component flow map learning of PDEs from incomplete, limited, and noisy data","authors":"Victor Churchill","doi":"10.1016/j.jcp.2025.113730","DOIUrl":null,"url":null,"abstract":"<div><div>We present a computational technique for modeling the evolution of dynamical systems in a reduced basis, with a focus on the challenging problem of modeling partially-observed partial differential equations (PDEs) on high-dimensional non-uniform grids. We address limitations of previous work on data-driven flow map learning in the sense that we focus on noisy and limited data to move toward data collection scenarios in real-world applications. Leveraging recent work on modeling PDEs in modal and nodal spaces, we present a neural network structure that is suitable for PDE modeling with noisy and limited data available only on a subset of the state variables or computational domain. In particular, spatial grid-point measurements are reduced using a learned linear transformation, after which the dynamics are learned in this reduced basis before being transformed back out to the nodal space. This approach yields a drastically reduced parameterization of the neural network compared with previous flow map models for nodal space learning. This allows for rapid high-resolution simulations, enabled by smaller training data sets and reduced training times.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"524 ","pages":"Article 113730"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125000130","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a computational technique for modeling the evolution of dynamical systems in a reduced basis, with a focus on the challenging problem of modeling partially-observed partial differential equations (PDEs) on high-dimensional non-uniform grids. We address limitations of previous work on data-driven flow map learning in the sense that we focus on noisy and limited data to move toward data collection scenarios in real-world applications. Leveraging recent work on modeling PDEs in modal and nodal spaces, we present a neural network structure that is suitable for PDE modeling with noisy and limited data available only on a subset of the state variables or computational domain. In particular, spatial grid-point measurements are reduced using a learned linear transformation, after which the dynamics are learned in this reduced basis before being transformed back out to the nodal space. This approach yields a drastically reduced parameterization of the neural network compared with previous flow map models for nodal space learning. This allows for rapid high-resolution simulations, enabled by smaller training data sets and reduced training times.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信