Prognostic machine learning models for thermophysical characteristics of nanodiamond-based nanolubricants for heat pump systems

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ammar M. Bahman , Emil Pradeep , Zafar Said , Prabhakar Sharma
{"title":"Prognostic machine learning models for thermophysical characteristics of nanodiamond-based nanolubricants for heat pump systems","authors":"Ammar M. Bahman ,&nbsp;Emil Pradeep ,&nbsp;Zafar Said ,&nbsp;Prabhakar Sharma","doi":"10.1016/j.egyai.2024.100453","DOIUrl":null,"url":null,"abstract":"<div><div>Lubricants for compressor oil significantly enhance the energy efficiency and performance of heat pump (HP) systems. This study compares prognostic machine learning (ML) models designed to predict the thermal conductivity and viscosity of nanolubricants used in HP compressors. Nanodiamond (ND) nanoparticles were mixed in Polyolester (POE) oil at volume concentrations ranging from 0.05 to 0.5 vol.% and temperatures ranging from 10 to 100<!--> <!-->°C. The data collected from the experimental research were used to build prognostic models using modern supervised ML techniques, including Gaussian process regression (GPR) and boosted regression tree (BRT). The GPR model demonstrated superior performance compared to the BRT model, achieving coefficient of correlation (R) values of 0.9996 and 0.9991 for thermal conductivity and viscosity, respectively. The reliability of the GPR and BRT models was further validated through comprehensive validation, sensitivity analysis, and extrapolation assessment using both empirical and unseen dataset references from the literature. When validated against an empirical correlation, the ML models exhibited a mean absolute error (MAE) of 0.17% for thermal conductivity and below 8% for viscosity. Additionally, when the GPR-based model was extended up to 120<!--> <!-->°C, the parametric analysis confirmed the reliability and accuracy of thermal conductivity and viscosity within a relative error of 5%. Furthermore, in the extrapolation analysis, despite changes in oil grade and nanolubricant concentrations, the GPR-based model showed a maximum absolute error (AE) of 19% compared to non-trained experimental data. Overall, the developed ML models can aid in designing and optimizing ND/POE nanolubricants for HP applications, achieving desired performance parameters while remaining economically viable and reducing the need for time-consuming laboratory-based testing.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100453"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Lubricants for compressor oil significantly enhance the energy efficiency and performance of heat pump (HP) systems. This study compares prognostic machine learning (ML) models designed to predict the thermal conductivity and viscosity of nanolubricants used in HP compressors. Nanodiamond (ND) nanoparticles were mixed in Polyolester (POE) oil at volume concentrations ranging from 0.05 to 0.5 vol.% and temperatures ranging from 10 to 100 °C. The data collected from the experimental research were used to build prognostic models using modern supervised ML techniques, including Gaussian process regression (GPR) and boosted regression tree (BRT). The GPR model demonstrated superior performance compared to the BRT model, achieving coefficient of correlation (R) values of 0.9996 and 0.9991 for thermal conductivity and viscosity, respectively. The reliability of the GPR and BRT models was further validated through comprehensive validation, sensitivity analysis, and extrapolation assessment using both empirical and unseen dataset references from the literature. When validated against an empirical correlation, the ML models exhibited a mean absolute error (MAE) of 0.17% for thermal conductivity and below 8% for viscosity. Additionally, when the GPR-based model was extended up to 120 °C, the parametric analysis confirmed the reliability and accuracy of thermal conductivity and viscosity within a relative error of 5%. Furthermore, in the extrapolation analysis, despite changes in oil grade and nanolubricant concentrations, the GPR-based model showed a maximum absolute error (AE) of 19% compared to non-trained experimental data. Overall, the developed ML models can aid in designing and optimizing ND/POE nanolubricants for HP applications, achieving desired performance parameters while remaining economically viable and reducing the need for time-consuming laboratory-based testing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信