Gabriele Immordino , Andrea Vaiuso , Andrea Da Ronch , Marcello Righi
{"title":"Predicting transonic flowfields in non–homogeneous unstructured grids using autoencoder graph convolutional networks","authors":"Gabriele Immordino , Andrea Vaiuso , Andrea Da Ronch , Marcello Righi","doi":"10.1016/j.jcp.2024.113708","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenges posed by non-homogeneous unstructured grids, which are commonly used in computational fluid dynamics. The prevalence of these grids in fluid dynamics scenarios has driven the exploration of innovative approaches for generating reduced-order models. Our approach leverages geometric deep learning, specifically through the use of an autoencoder architecture built on graph convolutional networks. This architecture enhances prediction accuracy by propagating information to distant nodes and emphasizing influential points. Key innovations include a dimensionality reduction module based on pressure-gradient values, fast connectivity reconstruction using Mahalanobis distance, optimization of the network architecture, and a physics-informed loss function based on aerodynamic coefficient. These advancements result in a more robust and accurate predictive model, achieving systematically lower errors compared to previous graph-based methods. The proposed methodology is validated through two distinct test cases—wing-only and wing-body configurations—demonstrating precise reconstruction of steady-state distributed quantities within a two-dimensional parametric space.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"524 ","pages":"Article 113708"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124009562","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the challenges posed by non-homogeneous unstructured grids, which are commonly used in computational fluid dynamics. The prevalence of these grids in fluid dynamics scenarios has driven the exploration of innovative approaches for generating reduced-order models. Our approach leverages geometric deep learning, specifically through the use of an autoencoder architecture built on graph convolutional networks. This architecture enhances prediction accuracy by propagating information to distant nodes and emphasizing influential points. Key innovations include a dimensionality reduction module based on pressure-gradient values, fast connectivity reconstruction using Mahalanobis distance, optimization of the network architecture, and a physics-informed loss function based on aerodynamic coefficient. These advancements result in a more robust and accurate predictive model, achieving systematically lower errors compared to previous graph-based methods. The proposed methodology is validated through two distinct test cases—wing-only and wing-body configurations—demonstrating precise reconstruction of steady-state distributed quantities within a two-dimensional parametric space.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.