Heterogeneous feature fusion based machine learning strategy for ECG diagnosis

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
He Ren , Qi Sun , Zhengguang Xiao , Miao Yu , Siqi Wang , Linrong Yuan , Yiming Li , Huating Tu , Mengting Tu , Hui Yang , Ping Li
{"title":"Heterogeneous feature fusion based machine learning strategy for ECG diagnosis","authors":"He Ren ,&nbsp;Qi Sun ,&nbsp;Zhengguang Xiao ,&nbsp;Miao Yu ,&nbsp;Siqi Wang ,&nbsp;Linrong Yuan ,&nbsp;Yiming Li ,&nbsp;Huating Tu ,&nbsp;Mengting Tu ,&nbsp;Hui Yang ,&nbsp;Ping Li","doi":"10.1016/j.eswa.2025.126714","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases, as a serious threat to life and health globally, its high misdiagnosis rate has been a challenge in ECG diagnosis. This study is dedicated to improving the accuracy and efficiency of ECG diagnosis through the introduction of artificial intelligence techniques. In this study, we innovatively designed a feature extraction framework named BiAE that combines the advantages of bi-directional long and short-term memory networks (BiLSTM) and autoencoder to effectively extract rich feature information from raw ECG signals. Meanwhile, a large number of high-dimensional features were automatically extracted from the time series data using tsfresh. Some of these key features (e.g., BiAE_Feature22, BiAE_Feature65, and BiAE_Feature45) play a significant role in the time and frequency domain variations of ECG signals, and show unique advantages in global signal identification, QRS wave cluster detection, T-wave analysis, and extreme abnormal signal capture, respectively. Ten machine learning models including support vector machines were subsequently employed for ECG signal classification into five specific categories such as Normal Beat, Unclassifiable Beat, Premature Ventricular Contraction (PVC), Premature or Ectopic Supraventricular Beat (SVPE), and Fusion of Ventricular and Normal Beat (FUSION). Through cross-validation and performance evaluation, the support vector machine (SVM) was finally identified as the optimal model with an accuracy of 96%. Artificial intelligence-assisted ECG diagnosis can significantly improve the efficiency and accuracy of ECG diagnosis, which is expected to provide strong support for early screening and accurate diagnosis of cardiovascular diseases.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"271 ","pages":"Article 126714"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425003367","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases, as a serious threat to life and health globally, its high misdiagnosis rate has been a challenge in ECG diagnosis. This study is dedicated to improving the accuracy and efficiency of ECG diagnosis through the introduction of artificial intelligence techniques. In this study, we innovatively designed a feature extraction framework named BiAE that combines the advantages of bi-directional long and short-term memory networks (BiLSTM) and autoencoder to effectively extract rich feature information from raw ECG signals. Meanwhile, a large number of high-dimensional features were automatically extracted from the time series data using tsfresh. Some of these key features (e.g., BiAE_Feature22, BiAE_Feature65, and BiAE_Feature45) play a significant role in the time and frequency domain variations of ECG signals, and show unique advantages in global signal identification, QRS wave cluster detection, T-wave analysis, and extreme abnormal signal capture, respectively. Ten machine learning models including support vector machines were subsequently employed for ECG signal classification into five specific categories such as Normal Beat, Unclassifiable Beat, Premature Ventricular Contraction (PVC), Premature or Ectopic Supraventricular Beat (SVPE), and Fusion of Ventricular and Normal Beat (FUSION). Through cross-validation and performance evaluation, the support vector machine (SVM) was finally identified as the optimal model with an accuracy of 96%. Artificial intelligence-assisted ECG diagnosis can significantly improve the efficiency and accuracy of ECG diagnosis, which is expected to provide strong support for early screening and accurate diagnosis of cardiovascular diseases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信