Experimental investigation of the impact of high-frequency alternating current on heating a Li-ion cell at subzero temperatures and its effect on lifetime

Joachim Oehl , Andreas Gleiter , Daniel Manka , Alexander Fill , Kai Peter Birke
{"title":"Experimental investigation of the impact of high-frequency alternating current on heating a Li-ion cell at subzero temperatures and its effect on lifetime","authors":"Joachim Oehl ,&nbsp;Andreas Gleiter ,&nbsp;Daniel Manka ,&nbsp;Alexander Fill ,&nbsp;Kai Peter Birke","doi":"10.1016/j.fub.2025.100036","DOIUrl":null,"url":null,"abstract":"<div><div>At low temperatures, lithium-ion cells exhibit poor performance, and especially during subzero temperature charging, specific ageing processes such as lithium plating can occur, leading to safety issues. An effective approach to heat up cells is to generate alternating current to produce power losses inside the cells. While many studies focus on the heating aspect, they often do not consider the ageing effects. Conversely, some research investigates the influence of current ripples on the cells’ lifetime. This study seeks to integrate the effects of current ripples and the heating process in relation to the ageing of the cell.</div><div>The research findings indicate that current ripples with a peak-to-peak value of approximately 40 A for a 3.5 Ah 18650 cell, as well as a cell voltage close to 0 V alternating with double the cell voltage at a high frequency of 250 kHz, have little to no effect on ageing at room temperature. However, when the cell was subjected to heating, specifically after 1800 heating cycles from −9 °C to 10 °C and an overall heating time exceeding 52 h with an average heat rate of nearly 11 K/Min, a capacity fade of approximately 7% linked to the heating was observed. This capacity fade is presumed to be due to mechanical stress resulting from rapid thermal changes in the cell.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100036"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At low temperatures, lithium-ion cells exhibit poor performance, and especially during subzero temperature charging, specific ageing processes such as lithium plating can occur, leading to safety issues. An effective approach to heat up cells is to generate alternating current to produce power losses inside the cells. While many studies focus on the heating aspect, they often do not consider the ageing effects. Conversely, some research investigates the influence of current ripples on the cells’ lifetime. This study seeks to integrate the effects of current ripples and the heating process in relation to the ageing of the cell.
The research findings indicate that current ripples with a peak-to-peak value of approximately 40 A for a 3.5 Ah 18650 cell, as well as a cell voltage close to 0 V alternating with double the cell voltage at a high frequency of 250 kHz, have little to no effect on ageing at room temperature. However, when the cell was subjected to heating, specifically after 1800 heating cycles from −9 °C to 10 °C and an overall heating time exceeding 52 h with an average heat rate of nearly 11 K/Min, a capacity fade of approximately 7% linked to the heating was observed. This capacity fade is presumed to be due to mechanical stress resulting from rapid thermal changes in the cell.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信