Time series forecasting of Valley fever infection in Maricopa County, AZ using LSTM

IF 7 Q1 HEALTH CARE SCIENCES & SERVICES
Xueting Jin , Fangwu Wei , Srinivasa Srivatsav Kandala , Tejas Umesh , Kayleigh Steele , John N. Galgiani , Manfred D. Laubichler
{"title":"Time series forecasting of Valley fever infection in Maricopa County, AZ using LSTM","authors":"Xueting Jin ,&nbsp;Fangwu Wei ,&nbsp;Srinivasa Srivatsav Kandala ,&nbsp;Tejas Umesh ,&nbsp;Kayleigh Steele ,&nbsp;John N. Galgiani ,&nbsp;Manfred D. Laubichler","doi":"10.1016/j.lana.2025.101010","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Coccidioidomycosis (CM), also known as Valley fever, is a respiratory infection. Recently, the number of confirmed cases of CM has been increasing. Precisely defining the influential factors and forecasting future infection can assist in public health messaging and treatment decisions.</div></div><div><h3>Methods</h3><div>We utilized Long Short-Term Memory (LSTM) networks to forecast CM cases, based on the daily pneumonia cases in Maricopa County, Arizona from 2020 to 2022. Besides weather and climate variables, we examined the impact of people's lifestyle change during COVID-19. Factors, including temperature, precipitation, wind speed, PM<sub>10</sub> and PM<sub>2.5</sub> concentration, drought, and stringency index, were included in LSTM networks, considering their association with CM prevalence, time-lag effect, and correlation with other factors.</div></div><div><h3>Findings</h3><div>LSTM can predict CM prevalence with accurate trend and low mean squared error (MSE). We also found a tradeoff between the length of the forecasting period and the performance of the forecasting model. The models with longer forecasting periods have less accurate trends over time and higher MSEs. Two models with different lengths of forecasting periods, 10 days and 30 days, are identified with good prediction.</div></div><div><h3>Interpretation</h3><div>LSTM algorithms, combined with traditional statistical methods, could help with the forecasting of CM cases. By predicting the CM prevalence, our results can inform researchers, epidemiologists, clinicians, and the public in order to assist public health.</div></div><div><h3>Funding</h3><div>“Getting to the Source of Arizona's Valley Fever Problem: A Tri-University Collaboration to Map and Characterize the Pathogen Where It Grows” funded by the <span>Arizona Board of Regents</span>.</div></div>","PeriodicalId":29783,"journal":{"name":"Lancet Regional Health-Americas","volume":"43 ","pages":"Article 101010"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Regional Health-Americas","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667193X25000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Coccidioidomycosis (CM), also known as Valley fever, is a respiratory infection. Recently, the number of confirmed cases of CM has been increasing. Precisely defining the influential factors and forecasting future infection can assist in public health messaging and treatment decisions.

Methods

We utilized Long Short-Term Memory (LSTM) networks to forecast CM cases, based on the daily pneumonia cases in Maricopa County, Arizona from 2020 to 2022. Besides weather and climate variables, we examined the impact of people's lifestyle change during COVID-19. Factors, including temperature, precipitation, wind speed, PM10 and PM2.5 concentration, drought, and stringency index, were included in LSTM networks, considering their association with CM prevalence, time-lag effect, and correlation with other factors.

Findings

LSTM can predict CM prevalence with accurate trend and low mean squared error (MSE). We also found a tradeoff between the length of the forecasting period and the performance of the forecasting model. The models with longer forecasting periods have less accurate trends over time and higher MSEs. Two models with different lengths of forecasting periods, 10 days and 30 days, are identified with good prediction.

Interpretation

LSTM algorithms, combined with traditional statistical methods, could help with the forecasting of CM cases. By predicting the CM prevalence, our results can inform researchers, epidemiologists, clinicians, and the public in order to assist public health.

Funding

“Getting to the Source of Arizona's Valley Fever Problem: A Tri-University Collaboration to Map and Characterize the Pathogen Where It Grows” funded by the Arizona Board of Regents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊介绍: The Lancet Regional Health – Americas, an open-access journal, contributes to The Lancet's global initiative by focusing on health-care quality and access in the Americas. It aims to advance clinical practice and health policy in the region, promoting better health outcomes. The journal publishes high-quality original research advocating change or shedding light on clinical practice and health policy. It welcomes submissions on various regional health topics, including infectious diseases, non-communicable diseases, child and adolescent health, maternal and reproductive health, emergency care, health policy, and health equity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信