Conversion-type charge/discharge reaction observed with Fe2O3-modified reduced graphene oxide positive electrode for aluminum rechargeable batteries

Masanobu Chiku, Tomoki Fujisawa, Hiroshi Nagao, Eiji Higuchi, Hiroshi Inoue
{"title":"Conversion-type charge/discharge reaction observed with Fe2O3-modified reduced graphene oxide positive electrode for aluminum rechargeable batteries","authors":"Masanobu Chiku,&nbsp;Tomoki Fujisawa,&nbsp;Hiroshi Nagao,&nbsp;Eiji Higuchi,&nbsp;Hiroshi Inoue","doi":"10.1016/j.fub.2025.100030","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum rechargeable batteries were prepared using commercially available iron oxide powder or reduced graphene oxide modified with iron oxide nanoparticles as positive electrode materials. The commercially available iron oxide powder was reversibly charged/discharged, but its capacity was very small, whitlow 15 mA h g<sup>−1</sup>. The charge/discharge mechanism was investigated by using X-ray diffraction, and it was found that iron oxide was reduced to iron metal during discharge, indicating a conversion-type reaction. This is the first time that a conversion-type positive electrode material for aluminum rechargeable batteries has been constructed using iron oxide. By utilizing a sulfone base electrolyte, we have fabricated the aluminum rechargeable batteries using a conversion reaction with copper chloride. A similar effect is expected for iron oxide. The use of reduced graphene oxide modified with iron oxide nanoparticles as a positive electrode resulted in a significant increase to 100 mA h g<sup>−1</sup> in charge/discharge capacity, and the capacity retention after 100 cycles was about 60 %, showing good cycle characteristics for a rechargeable battery as a conversion-type electrode material.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum rechargeable batteries were prepared using commercially available iron oxide powder or reduced graphene oxide modified with iron oxide nanoparticles as positive electrode materials. The commercially available iron oxide powder was reversibly charged/discharged, but its capacity was very small, whitlow 15 mA h g−1. The charge/discharge mechanism was investigated by using X-ray diffraction, and it was found that iron oxide was reduced to iron metal during discharge, indicating a conversion-type reaction. This is the first time that a conversion-type positive electrode material for aluminum rechargeable batteries has been constructed using iron oxide. By utilizing a sulfone base electrolyte, we have fabricated the aluminum rechargeable batteries using a conversion reaction with copper chloride. A similar effect is expected for iron oxide. The use of reduced graphene oxide modified with iron oxide nanoparticles as a positive electrode resulted in a significant increase to 100 mA h g−1 in charge/discharge capacity, and the capacity retention after 100 cycles was about 60 %, showing good cycle characteristics for a rechargeable battery as a conversion-type electrode material.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信