Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systems

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Abdelkabir Bacha , Ramzi El Idrissi , Khalid Janati Idrissi , Fatima Lmai
{"title":"Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systems","authors":"Abdelkabir Bacha ,&nbsp;Ramzi El Idrissi ,&nbsp;Khalid Janati Idrissi ,&nbsp;Fatima Lmai","doi":"10.1016/j.dib.2025.111286","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a new, comprehensive dataset for Fault Detection and Diagnosis (FDD) in inverter-driven Permanent Magnet Synchronous Motor (PMSM) systems. Despite the increasing significance of AI-driven FDD techniques, the domain suffers from a lack of publicly accessible, real-world datasets for algorithm development and evaluation. Our contribution fills this gap by offering a comprehensive, multi-sensor dataset obtained from a bespoke experimental apparatus. The dataset includes different fault cases, such as open-circuit faults, short-circuit faults, and overheating conditions in the inverter switches. The dataset incorporates 8 raw sensor measurements and 15 derived features, recorded at 10 Hz, amounting to 10,892 samples across 9 operational conditions (one normal, eight fault types). By keeping this dataset publicly accessible, we seek to accelerate research in AI-driven fault identification and diagnosis for electric drive systems.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"Article 111286"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a new, comprehensive dataset for Fault Detection and Diagnosis (FDD) in inverter-driven Permanent Magnet Synchronous Motor (PMSM) systems. Despite the increasing significance of AI-driven FDD techniques, the domain suffers from a lack of publicly accessible, real-world datasets for algorithm development and evaluation. Our contribution fills this gap by offering a comprehensive, multi-sensor dataset obtained from a bespoke experimental apparatus. The dataset includes different fault cases, such as open-circuit faults, short-circuit faults, and overheating conditions in the inverter switches. The dataset incorporates 8 raw sensor measurements and 15 derived features, recorded at 10 Hz, amounting to 10,892 samples across 9 operational conditions (one normal, eight fault types). By keeping this dataset publicly accessible, we seek to accelerate research in AI-driven fault identification and diagnosis for electric drive systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信