{"title":"Accelerated secondary frequency regulation and active power sharing for islanded microgrids with external disturbances: A fully distributed approach","authors":"Boda Ning , Qing-Long Han , Zongyu Zuo , Lei Ding","doi":"10.1016/j.automatica.2025.112146","DOIUrl":null,"url":null,"abstract":"<div><div>Islanded microgrids face some challenges in maintaining stable frequency and sharing proper power among distributed generators (DGs) in the presence of external disturbances. This paper develops a novel fully distributed approach to achieve accelerated secondary frequency regulation (FR) and active power sharing (APS) in islanded microgrids, which enhances system performance and robustness against external disturbances. The proposed control strategy combines advanced consensus algorithms with distributed secondary control loops, eliminating the requirement for a central control unit thereby improving the scalability. Particularly, the fully distributed feature of the proposed control strategy can be understood from two aspects. On one hand, the controller itself is not using global information of (1) communication topology, such as the second smallest eigenvalue of its Laplacian matrix; and (2) the total number of DGs in the microgrid. On the other hand, the estimated settling time is independent of the aforementioned global information. Therefore, the proposed fully distributed control scheme has the potential of becoming a promising solution for the resilient and efficient management of large-scale islanded microgrids. The effectiveness of the designed controllers is validated through numerical examples, demonstrating superior performance in terms of FR, APS, and transient response under various operating conditions.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"174 ","pages":"Article 112146"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825000378","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Islanded microgrids face some challenges in maintaining stable frequency and sharing proper power among distributed generators (DGs) in the presence of external disturbances. This paper develops a novel fully distributed approach to achieve accelerated secondary frequency regulation (FR) and active power sharing (APS) in islanded microgrids, which enhances system performance and robustness against external disturbances. The proposed control strategy combines advanced consensus algorithms with distributed secondary control loops, eliminating the requirement for a central control unit thereby improving the scalability. Particularly, the fully distributed feature of the proposed control strategy can be understood from two aspects. On one hand, the controller itself is not using global information of (1) communication topology, such as the second smallest eigenvalue of its Laplacian matrix; and (2) the total number of DGs in the microgrid. On the other hand, the estimated settling time is independent of the aforementioned global information. Therefore, the proposed fully distributed control scheme has the potential of becoming a promising solution for the resilient and efficient management of large-scale islanded microgrids. The effectiveness of the designed controllers is validated through numerical examples, demonstrating superior performance in terms of FR, APS, and transient response under various operating conditions.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.