Phase-field models for ductile fatigue fracture

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Martha Kalina , Tom Schneider , Haim Waisman , Markus Kästner
{"title":"Phase-field models for ductile fatigue fracture","authors":"Martha Kalina ,&nbsp;Tom Schneider ,&nbsp;Haim Waisman ,&nbsp;Markus Kästner","doi":"10.1016/j.tafmec.2024.104842","DOIUrl":null,"url":null,"abstract":"<div><div>Fatigue fracture is one of the main causes of failure in structures. However, the simulation of fatigue crack growth is computationally demanding due to the large number of load cycles involved. Metals in the low cycle fatigue range often show significant plastic zones at the crack tip, calling for elastic–plastic material models, which increase the computation time even further. In pursuit of a more efficient model, we propose a simplified phase-field model for ductile fatigue fracture, which indirectly accounts for plasticity within the fatigue damage accumulation. Additionally, a cycle-skipping approach is inherent to the concept, reducing computation time by up to several orders of magnitude. We show that the proposed model is in fact a direct simplification of a phase-field model with elastic–plastic material behavior.</div><div>We validate this simplified model in two ways: First, we show that it can reproduce the main characteristics of fatigue crack growth. Secondly, we compare it to a reference phase-field model with a conventional elastic–plastic material routine, nonlinear hardening and a fatigue variable based on the strain energy density. The comparison shows that for moderate load amplitudes, the simplified model approximates the stress state at the crack tip well. The same is true for size and shape of the plastic zone and the approximation of the crack driving force. The model’s limitations lie in the modeling of the stress redistribution due to plasticity. Both model variants are parametrized with experimentally determined values for elastic, plastic, fracture and fatigue properties of AA2024 T351 aluminum sheet material.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"136 ","pages":"Article 104842"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224005925","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue fracture is one of the main causes of failure in structures. However, the simulation of fatigue crack growth is computationally demanding due to the large number of load cycles involved. Metals in the low cycle fatigue range often show significant plastic zones at the crack tip, calling for elastic–plastic material models, which increase the computation time even further. In pursuit of a more efficient model, we propose a simplified phase-field model for ductile fatigue fracture, which indirectly accounts for plasticity within the fatigue damage accumulation. Additionally, a cycle-skipping approach is inherent to the concept, reducing computation time by up to several orders of magnitude. We show that the proposed model is in fact a direct simplification of a phase-field model with elastic–plastic material behavior.
We validate this simplified model in two ways: First, we show that it can reproduce the main characteristics of fatigue crack growth. Secondly, we compare it to a reference phase-field model with a conventional elastic–plastic material routine, nonlinear hardening and a fatigue variable based on the strain energy density. The comparison shows that for moderate load amplitudes, the simplified model approximates the stress state at the crack tip well. The same is true for size and shape of the plastic zone and the approximation of the crack driving force. The model’s limitations lie in the modeling of the stress redistribution due to plasticity. Both model variants are parametrized with experimentally determined values for elastic, plastic, fracture and fatigue properties of AA2024 T351 aluminum sheet material.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信