Jing-Zhe Xu , Zhi-Wei Liu , Ming-Feng Ge , Tao Yang , Ming Chi , Dingxin He
{"title":"Distributed predefined-time algorithms for optimal solution seeking in multi-agent systems subject to input disturbances","authors":"Jing-Zhe Xu , Zhi-Wei Liu , Ming-Feng Ge , Tao Yang , Ming Chi , Dingxin He","doi":"10.1016/j.automatica.2025.112139","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel incremental consensus-based algorithm for solving a class of distributed optimization problems in multi-agent systems, considering input disturbances, equality constraints, and box constraints. Traditional methods rely on average consensus to maintain the satisfaction of equality constraints throughout the entire evolution process. However, in practical applications, input disturbances can disrupt these equality constraints, rendering traditional methods ineffective. To address this challenge, the proposed algorithm combines integration sliding mode control technology with the observer methodology, creating a unified framework capable of handling input disturbances and preventing the system state from deviating beyond the solution space defined by the equality and box constraints. Moreover, the proposed algorithm offers the advantage of ensuring that all agents reach the optimal solution within a predefined time frame. This settling time can be directly adjusted by modifying one or more parameters. Finally, several numerical examples are validated to demonstrate the effectiveness and performance of the proposed algorithm.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"174 ","pages":"Article 112139"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825000305","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel incremental consensus-based algorithm for solving a class of distributed optimization problems in multi-agent systems, considering input disturbances, equality constraints, and box constraints. Traditional methods rely on average consensus to maintain the satisfaction of equality constraints throughout the entire evolution process. However, in practical applications, input disturbances can disrupt these equality constraints, rendering traditional methods ineffective. To address this challenge, the proposed algorithm combines integration sliding mode control technology with the observer methodology, creating a unified framework capable of handling input disturbances and preventing the system state from deviating beyond the solution space defined by the equality and box constraints. Moreover, the proposed algorithm offers the advantage of ensuring that all agents reach the optimal solution within a predefined time frame. This settling time can be directly adjusted by modifying one or more parameters. Finally, several numerical examples are validated to demonstrate the effectiveness and performance of the proposed algorithm.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.