A simplified online adaptive workflow for long-course magnetic resonance-guided radiotherapy in esophageal cancer

IF 3.4 Q2 ONCOLOGY
Koen M. Kuijer, Roel Bouwmans, Lando S. Bosma, Stella Mook , Gert J. Meijer
{"title":"A simplified online adaptive workflow for long-course magnetic resonance-guided radiotherapy in esophageal cancer","authors":"Koen M. Kuijer,&nbsp;Roel Bouwmans,&nbsp;Lando S. Bosma,&nbsp;Stella Mook ,&nbsp;Gert J. Meijer","doi":"10.1016/j.phro.2025.100717","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>Online adaptive magnetic resonance-guided radiotherapy (MRgRT) enables high-precision radiotherapy for esophageal cancer patients but is less feasible due to long on-table times in combination with long-course treatment. In this study, we conducted an in-silico assessment of a simplified online adaptive workflow, Adapt-To-Shape-lite (ATS-lite), in which deformable propagated contours are not modified, and assessed its feasibility.</div></div><div><h3>Materials and Methods</h3><div>The ATS-lite workflow was simulated for all fractions of nine esophageal cancer patients who had previously received full online adaptive MRgRT with manual contour corrections if needed. The deformable propagated contours were not adjusted. A dose of 41.4 Gy in 23 fractions was prescribed. Intra- and interfraction dose accumulation were performed to evaluate target coverage per fraction and across the entire treatment. For individual fractions, coverage of the manually corrected clinical target volume (CTV) was considered adequate if V95% &gt; 98 % and V90% &gt; 99.5 %. Feasibility was assessed by recording treatment times in the first patients treated with ATS-lite.</div></div><div><h3>Results</h3><div>The ATS-lite workflow provided adequate target coverage over the entire treatment for all patients, with sufficient coverage in 90% of the 177 fractions analyzed. Closer inspection revealed that inadequate target coverage in individual fractions was primarily attributed to enlargement of the manually corrected CTV, rather than poor contour propagation in the ATS-lite workflow. In seven patients, the ATS-lite workflow achieved a median time per fraction of 23 min.</div></div><div><h3>Conclusions</h3><div>The ATS-lite workflow provides adequate target coverage and is feasible for online adaptive MRgRT in long-course esophageal cancer treatments.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100717"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Purpose

Online adaptive magnetic resonance-guided radiotherapy (MRgRT) enables high-precision radiotherapy for esophageal cancer patients but is less feasible due to long on-table times in combination with long-course treatment. In this study, we conducted an in-silico assessment of a simplified online adaptive workflow, Adapt-To-Shape-lite (ATS-lite), in which deformable propagated contours are not modified, and assessed its feasibility.

Materials and Methods

The ATS-lite workflow was simulated for all fractions of nine esophageal cancer patients who had previously received full online adaptive MRgRT with manual contour corrections if needed. The deformable propagated contours were not adjusted. A dose of 41.4 Gy in 23 fractions was prescribed. Intra- and interfraction dose accumulation were performed to evaluate target coverage per fraction and across the entire treatment. For individual fractions, coverage of the manually corrected clinical target volume (CTV) was considered adequate if V95% > 98 % and V90% > 99.5 %. Feasibility was assessed by recording treatment times in the first patients treated with ATS-lite.

Results

The ATS-lite workflow provided adequate target coverage over the entire treatment for all patients, with sufficient coverage in 90% of the 177 fractions analyzed. Closer inspection revealed that inadequate target coverage in individual fractions was primarily attributed to enlargement of the manually corrected CTV, rather than poor contour propagation in the ATS-lite workflow. In seven patients, the ATS-lite workflow achieved a median time per fraction of 23 min.

Conclusions

The ATS-lite workflow provides adequate target coverage and is feasible for online adaptive MRgRT in long-course esophageal cancer treatments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信