Electrocardiogram-gated cardiac computed tomography-based patient- and segment-specific cardiac motion estimation method in stereotactic arrhythmia radioablation for ventricular tachycardia

IF 3.4 Q2 ONCOLOGY
Jingyang Xie , Alicia S. Bicu , Melanie Grehn , Mustafa Kuru , Adrian Zaman , Xinyu Lu , Christian Janorschke , Luuk H.G. van der Pol , Martin F. Fast , Jens Fleckenstein , Marcus Both , Stephan Hohmann , Egor Borzov , Peter Winkler , Roland R. Tilz , Dirk Rades , Frank A. Giordano , Daniel Buergy , Boris Rudic , David Duncker , Lena Kaestner
{"title":"Electrocardiogram-gated cardiac computed tomography-based patient- and segment-specific cardiac motion estimation method in stereotactic arrhythmia radioablation for ventricular tachycardia","authors":"Jingyang Xie ,&nbsp;Alicia S. Bicu ,&nbsp;Melanie Grehn ,&nbsp;Mustafa Kuru ,&nbsp;Adrian Zaman ,&nbsp;Xinyu Lu ,&nbsp;Christian Janorschke ,&nbsp;Luuk H.G. van der Pol ,&nbsp;Martin F. Fast ,&nbsp;Jens Fleckenstein ,&nbsp;Marcus Both ,&nbsp;Stephan Hohmann ,&nbsp;Egor Borzov ,&nbsp;Peter Winkler ,&nbsp;Roland R. Tilz ,&nbsp;Dirk Rades ,&nbsp;Frank A. Giordano ,&nbsp;Daniel Buergy ,&nbsp;Boris Rudic ,&nbsp;David Duncker ,&nbsp;Lena Kaestner","doi":"10.1016/j.phro.2025.100700","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Motion management strategies such as gating under breath-hold can reduce breathing-induced motion during stereotactic arrhythmia radioablation (STAR) for refractory ventricular tachycardia. However, heartbeat-induced motion is essential to define an appropriate cardiac internal target volume (ITV) margin. In this study, we introduce a patient- and segment-specific cardiac motion estimation method and cardiac motion data of the clinical target volume (CTV), ICD lead tips and left ventricle (LV) segments.</div></div><div><h3>Materials and methods</h3><div>Data from 10 STAR-treated patients were retrospectively analyzed. The LV was semi-automatically segmented according to the 17-segment model. Electrocardiogram-gated contrast-enhanced breath-hold cardiac CTs were automatically non-rigidly registered for motion estimation. The correlation and significant differences between ICD tip motion and CTV motion were assessed using the Pearson correlation coefficient (PCC) and Wilcoxon signed-rank test, while spatial discrepancies with both CTV and segment motion were quantified using the Euclidean distance.</div></div><div><h3>Results</h3><div>The CTVs (center of mass) moved 3.4 ± 1.4 mm and the ICD lead tips moved 4.9 ± 2.2 mm. The maximum motion per patient was observed in basal and mid-cavity LV segments in 3D. The PCC showed a strong positive motion correlation between the ICD tip and CTV in 3D (0.84), while the p-values indicated statistically significant differences in the right-left, anterior-posterior and 3D directions.</div></div><div><h3>Conclusion</h3><div>The proposed methods enable patient- and segment-specific cardiac ITV margin estimation. The motion in most LV segments was limited, however, cardiac ITV margins may need adjustment in individual cases. The impact of cardiac motion on the dosimetry needs further investigation.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100700"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Motion management strategies such as gating under breath-hold can reduce breathing-induced motion during stereotactic arrhythmia radioablation (STAR) for refractory ventricular tachycardia. However, heartbeat-induced motion is essential to define an appropriate cardiac internal target volume (ITV) margin. In this study, we introduce a patient- and segment-specific cardiac motion estimation method and cardiac motion data of the clinical target volume (CTV), ICD lead tips and left ventricle (LV) segments.

Materials and methods

Data from 10 STAR-treated patients were retrospectively analyzed. The LV was semi-automatically segmented according to the 17-segment model. Electrocardiogram-gated contrast-enhanced breath-hold cardiac CTs were automatically non-rigidly registered for motion estimation. The correlation and significant differences between ICD tip motion and CTV motion were assessed using the Pearson correlation coefficient (PCC) and Wilcoxon signed-rank test, while spatial discrepancies with both CTV and segment motion were quantified using the Euclidean distance.

Results

The CTVs (center of mass) moved 3.4 ± 1.4 mm and the ICD lead tips moved 4.9 ± 2.2 mm. The maximum motion per patient was observed in basal and mid-cavity LV segments in 3D. The PCC showed a strong positive motion correlation between the ICD tip and CTV in 3D (0.84), while the p-values indicated statistically significant differences in the right-left, anterior-posterior and 3D directions.

Conclusion

The proposed methods enable patient- and segment-specific cardiac ITV margin estimation. The motion in most LV segments was limited, however, cardiac ITV margins may need adjustment in individual cases. The impact of cardiac motion on the dosimetry needs further investigation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信