Christoph Waly, Sandra Schulnig , Florian Arbeiter
{"title":"Strain rate-dependent failure modes of material extrusion-based additively manufactured PETG: A study on crack deflection and penetration","authors":"Christoph Waly, Sandra Schulnig , Florian Arbeiter","doi":"10.1016/j.tafmec.2024.104834","DOIUrl":null,"url":null,"abstract":"<div><div>The layer-by-layer nature of fused filament fabrication (FFF) introduces interfaces along the build direction (z-axis). A crack approaching an interface may deflect or penetrate subsequent layers, based on the relative strengths of the interface and the matrix. This study evaluates the applicability of the Cook & Gordan (C&G) model for predicting crack deflection or penetration in glycol-modified poly(ethylene terephthalate) (PETG) printed structures, considering different print orientations and layer heights. The loading rate was varied between 0.1 and 1000 <!--> <!-->mm/min to identify potential rate-dependent effects. Interface and matrix strengths were determined through tensile testing, and their ratio was used to assess the validity of the C&G criterion. The results, supported by fracture mechanical validation experiments, indicate that the C&G model can effectively predict crack paths in FFF-printed PETG structures, provided that the assumptions of linear elastic fracture mechanics are not significantly violated. Accurate predictions were unattainable at the lowest loading rate (0.1 mm/min). For loading rates ≥ 10 mm/min the criterion appears plausible, aligning with previous studies.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"136 ","pages":"Article 104834"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224005846","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The layer-by-layer nature of fused filament fabrication (FFF) introduces interfaces along the build direction (z-axis). A crack approaching an interface may deflect or penetrate subsequent layers, based on the relative strengths of the interface and the matrix. This study evaluates the applicability of the Cook & Gordan (C&G) model for predicting crack deflection or penetration in glycol-modified poly(ethylene terephthalate) (PETG) printed structures, considering different print orientations and layer heights. The loading rate was varied between 0.1 and 1000 mm/min to identify potential rate-dependent effects. Interface and matrix strengths were determined through tensile testing, and their ratio was used to assess the validity of the C&G criterion. The results, supported by fracture mechanical validation experiments, indicate that the C&G model can effectively predict crack paths in FFF-printed PETG structures, provided that the assumptions of linear elastic fracture mechanics are not significantly violated. Accurate predictions were unattainable at the lowest loading rate (0.1 mm/min). For loading rates ≥ 10 mm/min the criterion appears plausible, aligning with previous studies.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.