A new method for predicting PM2.5 concentrations in subway stations based on a multiscale adaptive noise reduction transformer -BiGRU model and an error correction method

Dingyu Chen, Hui Liu
{"title":"A new method for predicting PM2.5 concentrations in subway stations based on a multiscale adaptive noise reduction transformer -BiGRU model and an error correction method","authors":"Dingyu Chen,&nbsp;Hui Liu","doi":"10.1016/j.iintel.2024.100128","DOIUrl":null,"url":null,"abstract":"<div><div>PM2.5 is a significant contributor to air pollution, with a notable impact on human health. Subway stations, with their high pedestrian traffic, present a particular challenge in this regard. By monitoring PM2.5 levels, subway managers can take prompt action, such as optimizing the operation of air purification equipment in stations, to enhance air quality within stations and thereby enhance the passenger experience. This paper proposes an enhanced Transformer-BiGRU prediction model, which incorporates a MSHAM(Multiscale Hybrid Attention Mechanism)comprising a multi-scale convolutional attention mechanism and a VMD decomposition self-attention mechanism. Additionally, a ANR(Adaptive Noise Reduction) module has been integrated into the model to facilitate noise reduction. Finally, the prediction is performed by BiGRU. The resulting error sequence is predicted by BiGRU and the predicted sequence is corrected. In this paper, a dataset of pollutants from Seoul subway stations in South Korea is used to compare with the base model. The model presented in this paper achieves the highest accuracy.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 1","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991524000471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PM2.5 is a significant contributor to air pollution, with a notable impact on human health. Subway stations, with their high pedestrian traffic, present a particular challenge in this regard. By monitoring PM2.5 levels, subway managers can take prompt action, such as optimizing the operation of air purification equipment in stations, to enhance air quality within stations and thereby enhance the passenger experience. This paper proposes an enhanced Transformer-BiGRU prediction model, which incorporates a MSHAM(Multiscale Hybrid Attention Mechanism)comprising a multi-scale convolutional attention mechanism and a VMD decomposition self-attention mechanism. Additionally, a ANR(Adaptive Noise Reduction) module has been integrated into the model to facilitate noise reduction. Finally, the prediction is performed by BiGRU. The resulting error sequence is predicted by BiGRU and the predicted sequence is corrected. In this paper, a dataset of pollutants from Seoul subway stations in South Korea is used to compare with the base model. The model presented in this paper achieves the highest accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信