Reliability-based safety format for structural fire engineering – Derivation based on the most likely failure point

Ruben Van Coile, Balša Jovanović, Florian Put
{"title":"Reliability-based safety format for structural fire engineering – Derivation based on the most likely failure point","authors":"Ruben Van Coile,&nbsp;Balša Jovanović,&nbsp;Florian Put","doi":"10.1016/j.iintel.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Designing structures for burnout resistance ensures stability during evacuation and search and rescue operations, limits collateral damage, and enhances post-fire repairability. This represents a significant shift from traditional prescriptive designs that do not evaluate performance under realistic fire conditions. However, given the variability in fire exposure and structural response, it is unclear which input values should be used to ensure a high level of reliability for burnout calculations. This paper introduces a safety format for burnout resistance compatible with the Eurocode and its reliability principles. The format allows users to specify desired reliability levels and prescribes equations for determining design values for load effects and fire load density using predetermined sensitivity weights. A method for calculating default sensitivity weights is outlined, proposing tentative values: 0.65 for resistance effect, −0.40 for load effect, and −0.80 for fire load density, with a default coefficient of variation of 0.30 for resistance effect when case-specific information is lacking. The safety format's performance is verified through case studies of a concrete slab and a numerical evaluation of a steel column, showing satisfactory and conservatively assessed results. Inherent conservatism in the design format may, however, occasionally lead to the undue rejection of designs. Further investigations are necessary to confirm the safety format's conceptualization, default sensitivity weights, and the influence of the adopted compartment fire model.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 1","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991524000446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing structures for burnout resistance ensures stability during evacuation and search and rescue operations, limits collateral damage, and enhances post-fire repairability. This represents a significant shift from traditional prescriptive designs that do not evaluate performance under realistic fire conditions. However, given the variability in fire exposure and structural response, it is unclear which input values should be used to ensure a high level of reliability for burnout calculations. This paper introduces a safety format for burnout resistance compatible with the Eurocode and its reliability principles. The format allows users to specify desired reliability levels and prescribes equations for determining design values for load effects and fire load density using predetermined sensitivity weights. A method for calculating default sensitivity weights is outlined, proposing tentative values: 0.65 for resistance effect, −0.40 for load effect, and −0.80 for fire load density, with a default coefficient of variation of 0.30 for resistance effect when case-specific information is lacking. The safety format's performance is verified through case studies of a concrete slab and a numerical evaluation of a steel column, showing satisfactory and conservatively assessed results. Inherent conservatism in the design format may, however, occasionally lead to the undue rejection of designs. Further investigations are necessary to confirm the safety format's conceptualization, default sensitivity weights, and the influence of the adopted compartment fire model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信