A self-supervised masked spatial distribution learning method for predicting machinery remaining useful life with missing data reconstruction

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ben Niu , Yi Xiao , Qinge Xiao , Yang Liu , Tao Peng , Zhile Yang
{"title":"A self-supervised masked spatial distribution learning method for predicting machinery remaining useful life with missing data reconstruction","authors":"Ben Niu ,&nbsp;Yi Xiao ,&nbsp;Qinge Xiao ,&nbsp;Yang Liu ,&nbsp;Tao Peng ,&nbsp;Zhile Yang","doi":"10.1016/j.aei.2024.102938","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately predicting the remaining useful life (RUL) of machines is vital for assessing machine health and minimizing economic losses resulting from downtime in sensor-equipped machines. However, real-world applications often encounter challenges such as rapid production cycles and unstable network conditions, inevitably leading to significant amounts of missing data. This challenges data-driven machinery RUL prediction, as conventional deep learning methods may struggle with missing data, impacting prediction accuracy. To address the issue, a missing data reconstruction method based on self-learning of mask spatial distribution is proposed. The structured spatial distribution characteristics of the mask, learned by the autoencoder, serve as self-supervised information for the imputation network to improve the data reconstruction performance. Meanwhile, a multi-task learning-enhanced prediction network architecture with adaptive weight adjustment is designed, defining tasks by RUL prediction under different data reconstruction accuracies. After pre-training on multiple tasks, the prediction network’s learning efficiency benefits from incorporating both common and task-specific rules for feature extraction from similar reconstructed data distributions. The proposed method is evaluated through ablation and comparative tests on application scenarios and standard datasets. Experimental results show that the proposed algorithm performs competitively against state-of-the-art data reconstruction algorithms on these test suites.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"64 ","pages":"Article 102938"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005895","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting the remaining useful life (RUL) of machines is vital for assessing machine health and minimizing economic losses resulting from downtime in sensor-equipped machines. However, real-world applications often encounter challenges such as rapid production cycles and unstable network conditions, inevitably leading to significant amounts of missing data. This challenges data-driven machinery RUL prediction, as conventional deep learning methods may struggle with missing data, impacting prediction accuracy. To address the issue, a missing data reconstruction method based on self-learning of mask spatial distribution is proposed. The structured spatial distribution characteristics of the mask, learned by the autoencoder, serve as self-supervised information for the imputation network to improve the data reconstruction performance. Meanwhile, a multi-task learning-enhanced prediction network architecture with adaptive weight adjustment is designed, defining tasks by RUL prediction under different data reconstruction accuracies. After pre-training on multiple tasks, the prediction network’s learning efficiency benefits from incorporating both common and task-specific rules for feature extraction from similar reconstructed data distributions. The proposed method is evaluated through ablation and comparative tests on application scenarios and standard datasets. Experimental results show that the proposed algorithm performs competitively against state-of-the-art data reconstruction algorithms on these test suites.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信