Multi-source fault data fusion diagnosis method based on hyper-feature space graph collaborative embedding

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoxin Dong , Hua Ding , Dawei Gao , Guangyu Zheng , Jiaxuan Wang , Qifa Lang
{"title":"Multi-source fault data fusion diagnosis method based on hyper-feature space graph collaborative embedding","authors":"Xiaoxin Dong ,&nbsp;Hua Ding ,&nbsp;Dawei Gao ,&nbsp;Guangyu Zheng ,&nbsp;Jiaxuan Wang ,&nbsp;Qifa Lang","doi":"10.1016/j.aei.2024.103092","DOIUrl":null,"url":null,"abstract":"<div><div>Rotating machinery fault diagnosis based on multi-source sensor monitoring presents high dimensionality, high sampling frequency, and nonlinearity problems, making it challenging to accurately and timely determine the true health status of the equipment. Moreover, existing methods, such as deep learning models, face issues like a large number of training parameters and limited interpretability, which hinder their application in engineering practice, especially in scenarios that require fast diagnostic performance and ease of deployment. To address this problem, a novel fault diagnosis framework based on hyper-feature space graph collaborative embedding (HFSGCE) is proposed in this paper to improve the health status identification efficiency. Firstly, the algorithm realizes the preservation of the near-neighbor structure of the data by establishing a hyper-feature space embedding graph model corresponding to different types of sensor data. Secondly, a fused hyper-Laplacian scatter matrix is established based on the graph structure model to achieve feature-level fusion of multi-source data. Finally, the dimensionality-reduced multi-source monitoring data is fed into the classifier for pattern recognition. The algorithm was experimentally validated using two types of bearing fault simulation data from Paderborn University and our laboratory. The results demonstrate that the algorithm effectively eliminates redundant information from large volumes of low-value-density monitoring data, providing a new insight for rotating machinery fault diagnosis in the context of big data.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"64 ","pages":"Article 103092"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624007432","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Rotating machinery fault diagnosis based on multi-source sensor monitoring presents high dimensionality, high sampling frequency, and nonlinearity problems, making it challenging to accurately and timely determine the true health status of the equipment. Moreover, existing methods, such as deep learning models, face issues like a large number of training parameters and limited interpretability, which hinder their application in engineering practice, especially in scenarios that require fast diagnostic performance and ease of deployment. To address this problem, a novel fault diagnosis framework based on hyper-feature space graph collaborative embedding (HFSGCE) is proposed in this paper to improve the health status identification efficiency. Firstly, the algorithm realizes the preservation of the near-neighbor structure of the data by establishing a hyper-feature space embedding graph model corresponding to different types of sensor data. Secondly, a fused hyper-Laplacian scatter matrix is established based on the graph structure model to achieve feature-level fusion of multi-source data. Finally, the dimensionality-reduced multi-source monitoring data is fed into the classifier for pattern recognition. The algorithm was experimentally validated using two types of bearing fault simulation data from Paderborn University and our laboratory. The results demonstrate that the algorithm effectively eliminates redundant information from large volumes of low-value-density monitoring data, providing a new insight for rotating machinery fault diagnosis in the context of big data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信