Knowledge graph-driven decision support for manufacturing process: A graph neural network-based knowledge reasoning approach

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chang Su, Qi Jiang, Yong Han, Tao Wang, Qingchen He
{"title":"Knowledge graph-driven decision support for manufacturing process: A graph neural network-based knowledge reasoning approach","authors":"Chang Su,&nbsp;Qi Jiang,&nbsp;Yong Han,&nbsp;Tao Wang,&nbsp;Qingchen He","doi":"10.1016/j.aei.2024.103098","DOIUrl":null,"url":null,"abstract":"<div><div>In modern manufacturing, effectively reusing and sharing knowledge is essential due to the vast amounts of data and resources available. This research introduces a three-layer cognitive manufacturing paradigm that integrates data, knowledge, and decision-making. Our model uses a manufacturing knowledge graph to organize various data sources and applies a dual-driven knowledge reasoning strategy for smooth data-to-knowledge transitions. We developed an automated framework to construct knowledge graphs specifically for machining product knowledge and implemented an RGAT-PRotatE method for regular knowledge updates. The RGAT encoder effectively captures complex relational dynamics using attention mechanisms to focus on key interactions within mechanical processes. Meanwhile, the PRotatE decoder predicts and fills in missing information in the graph. We also introduce a knowledge-centric decision support system that utilizes the knowledge graph’s reasoning capabilities. An empirical study on the fabrication of aero-engine casings demonstrates the practicality and effectiveness of our framework, contributing to advancements in cognitive manufacturing and decision-making.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"64 ","pages":"Article 103098"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624007493","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In modern manufacturing, effectively reusing and sharing knowledge is essential due to the vast amounts of data and resources available. This research introduces a three-layer cognitive manufacturing paradigm that integrates data, knowledge, and decision-making. Our model uses a manufacturing knowledge graph to organize various data sources and applies a dual-driven knowledge reasoning strategy for smooth data-to-knowledge transitions. We developed an automated framework to construct knowledge graphs specifically for machining product knowledge and implemented an RGAT-PRotatE method for regular knowledge updates. The RGAT encoder effectively captures complex relational dynamics using attention mechanisms to focus on key interactions within mechanical processes. Meanwhile, the PRotatE decoder predicts and fills in missing information in the graph. We also introduce a knowledge-centric decision support system that utilizes the knowledge graph’s reasoning capabilities. An empirical study on the fabrication of aero-engine casings demonstrates the practicality and effectiveness of our framework, contributing to advancements in cognitive manufacturing and decision-making.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信