Residual stresses in cold-formed steel sections: An overview of influences and measurement techniques

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ayad Mutafi , J.M. Irwan , Noorfaizal Yidris , Abdullah Faisal Alshalif , Yazid Saif , Hamdi Abdulrahman , Ala Mutaafi , Yasser Yahya Al-Ashmori , Mugahed Amran , Nelson Maureira-Carsalade , Siva Avudaiappan
{"title":"Residual stresses in cold-formed steel sections: An overview of influences and measurement techniques","authors":"Ayad Mutafi ,&nbsp;J.M. Irwan ,&nbsp;Noorfaizal Yidris ,&nbsp;Abdullah Faisal Alshalif ,&nbsp;Yazid Saif ,&nbsp;Hamdi Abdulrahman ,&nbsp;Ala Mutaafi ,&nbsp;Yasser Yahya Al-Ashmori ,&nbsp;Mugahed Amran ,&nbsp;Nelson Maureira-Carsalade ,&nbsp;Siva Avudaiappan","doi":"10.1016/j.finmec.2025.100306","DOIUrl":null,"url":null,"abstract":"<div><div>Cold-formed steel (CFS) members offer significant advantages over hot-rolled sections, primarily due to their high strength-to-weight ratio and versatility in forming various cross-sectional shapes. These attributes make CFS an efficient choice for design and construction. This paper reviews current design methods for CFS, focusing on the impact of initial imperfections. It also examines various techniques for measuring residual stress in CFS sections, including analytical, experimental, and numerical approaches. The study concludes that while analytical methods are effective, they become complex when accounting for material anisotropy. Laboratory techniques provide reliable measurements but are limited in detecting through-thickness residual stresses. Numerical approaches offer comprehensive insights but require further validation across different material and geometric configurations. The paper highlights the need for advanced analytical models, improved laboratory methods, and expanded numerical techniques to address existing knowledge gaps in residual stress assessment for CFS structures.</div></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"18 ","pages":"Article 100306"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359725000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cold-formed steel (CFS) members offer significant advantages over hot-rolled sections, primarily due to their high strength-to-weight ratio and versatility in forming various cross-sectional shapes. These attributes make CFS an efficient choice for design and construction. This paper reviews current design methods for CFS, focusing on the impact of initial imperfections. It also examines various techniques for measuring residual stress in CFS sections, including analytical, experimental, and numerical approaches. The study concludes that while analytical methods are effective, they become complex when accounting for material anisotropy. Laboratory techniques provide reliable measurements but are limited in detecting through-thickness residual stresses. Numerical approaches offer comprehensive insights but require further validation across different material and geometric configurations. The paper highlights the need for advanced analytical models, improved laboratory methods, and expanded numerical techniques to address existing knowledge gaps in residual stress assessment for CFS structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信