Spatial and inter-annual variation in the Lake Superior offshore zooplankton community

IF 2.4 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Julie E. Lietz , Richard P. Barbiero , Anne E. Scofield , Barry M. Lesht
{"title":"Spatial and inter-annual variation in the Lake Superior offshore zooplankton community","authors":"Julie E. Lietz ,&nbsp;Richard P. Barbiero ,&nbsp;Anne E. Scofield ,&nbsp;Barry M. Lesht","doi":"10.1016/j.jglr.2024.102496","DOIUrl":null,"url":null,"abstract":"<div><div>Lake Superior’s offshore zooplankton community is commonly considered spatially homogeneous and relatively invariant, and thus often referenced as a baseline oligotrophic zooplankton community for the Great Lakes. However, zooplankton biomass can indeed exhibit substantial variability in Lake Superior on finer spatial and temporal scales, but this is not well documented in the literature. We used long-term monitoring data generated by the Environmental Protection Agency’s Great Lakes Biology Monitoring Program from 1997 to 2018 to investigate offshore zooplankton community structure during summer stratification. Both cluster analysis and non-metric multidimensional scaling ordination were used to examine zooplankton spatial patterns in relation to environmental variables. In addition, we used modeled surface current projections for the weeks prior to sampling events to assess the potential importance of horizontal transport in shaping the offshore zooplankton community. We found that although calanoid copepods consistently dominated the community, the relative contribution of cladocerans to total zooplankton biomass was variable. Cluster analysis often singled out three stations, two north of Isle Royale and one offshore of the Pic River, that typically had both higher chlorophyll-a concentrations and higher cladoceran biomass than most others. Analysis of surface current projections suggested horizontal transport of zooplankton could occur from stations with high cladoceran biomass, possibly driving more widespread shifts in the offshore community than expected. Continued assessment of connections between physical and biological variables is important to anticipate food web responses to future stressors, such as climate-driven changes to temperature and circulation.</div></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"51 1","pages":"Article 102496"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024002624","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lake Superior’s offshore zooplankton community is commonly considered spatially homogeneous and relatively invariant, and thus often referenced as a baseline oligotrophic zooplankton community for the Great Lakes. However, zooplankton biomass can indeed exhibit substantial variability in Lake Superior on finer spatial and temporal scales, but this is not well documented in the literature. We used long-term monitoring data generated by the Environmental Protection Agency’s Great Lakes Biology Monitoring Program from 1997 to 2018 to investigate offshore zooplankton community structure during summer stratification. Both cluster analysis and non-metric multidimensional scaling ordination were used to examine zooplankton spatial patterns in relation to environmental variables. In addition, we used modeled surface current projections for the weeks prior to sampling events to assess the potential importance of horizontal transport in shaping the offshore zooplankton community. We found that although calanoid copepods consistently dominated the community, the relative contribution of cladocerans to total zooplankton biomass was variable. Cluster analysis often singled out three stations, two north of Isle Royale and one offshore of the Pic River, that typically had both higher chlorophyll-a concentrations and higher cladoceran biomass than most others. Analysis of surface current projections suggested horizontal transport of zooplankton could occur from stations with high cladoceran biomass, possibly driving more widespread shifts in the offshore community than expected. Continued assessment of connections between physical and biological variables is important to anticipate food web responses to future stressors, such as climate-driven changes to temperature and circulation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Great Lakes Research
Journal of Great Lakes Research 生物-海洋与淡水生物学
CiteScore
5.10
自引率
13.60%
发文量
178
审稿时长
6 months
期刊介绍: Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信