Ryan C. Grow , Eric Berglund , Friedrich Fischer , Michael D. Rennie
{"title":"Reducing bias in Coregonus artedi abundance estimates using stationary up-looking acoustics","authors":"Ryan C. Grow , Eric Berglund , Friedrich Fischer , Michael D. Rennie","doi":"10.1016/j.jglr.2024.102456","DOIUrl":null,"url":null,"abstract":"<div><div>Mobile hydroacoustic surveys using ship-based down-looking transducers are widely used to estimate densities for ecologically and economically important pelagic fishes. However, this method likely underestimates densities of some surface-oriented species due to biases associated with the acoustic surface exclusion zone and ship avoidance behaviours. We compared cisco (<em>Coregonus artedi</em>) density estimates from a stationary up-looking platform survey to a standard down-looking acoustic survey. Both systems were deployed during the fall cisco spawn in Thunder Bay, Lake Superior 2020–2022. Cisco density estimates from the stationary up-looking platform were on average 6.7 times higher in the upper water column (∼1–10 m) and 2 times higher over the entire water column (∼1–45 m) than those from standard mobile surveys. Ship avoidance behaviour associated with mobile surveys was apparent in the upper water column; median cisco densities observed by the platform fell from ∼36 to ∼9 fish/ha when the ship passed near the platform. Abundance estimates from the platform when not influenced by ship avoidance provided higher quota estimates than the standard survey in 2020 and 2022, but were similar in 2021. A multi-day deployment of the platform tracked a progressive daily increase in fish densities, highlighting the sensitivity of mobile survey results to the day they are conducted, often dictated by environmental conditions. Our results show promise in applying stationary acoustic deployments in fisheries surveys, with improved accuracy and reduced effort compared to mobile acoustic surveys in the management and monitoring of pelagic fishes in the Great Lakes.</div></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"51 1","pages":"Article 102456"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024002223","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile hydroacoustic surveys using ship-based down-looking transducers are widely used to estimate densities for ecologically and economically important pelagic fishes. However, this method likely underestimates densities of some surface-oriented species due to biases associated with the acoustic surface exclusion zone and ship avoidance behaviours. We compared cisco (Coregonus artedi) density estimates from a stationary up-looking platform survey to a standard down-looking acoustic survey. Both systems were deployed during the fall cisco spawn in Thunder Bay, Lake Superior 2020–2022. Cisco density estimates from the stationary up-looking platform were on average 6.7 times higher in the upper water column (∼1–10 m) and 2 times higher over the entire water column (∼1–45 m) than those from standard mobile surveys. Ship avoidance behaviour associated with mobile surveys was apparent in the upper water column; median cisco densities observed by the platform fell from ∼36 to ∼9 fish/ha when the ship passed near the platform. Abundance estimates from the platform when not influenced by ship avoidance provided higher quota estimates than the standard survey in 2020 and 2022, but were similar in 2021. A multi-day deployment of the platform tracked a progressive daily increase in fish densities, highlighting the sensitivity of mobile survey results to the day they are conducted, often dictated by environmental conditions. Our results show promise in applying stationary acoustic deployments in fisheries surveys, with improved accuracy and reduced effort compared to mobile acoustic surveys in the management and monitoring of pelagic fishes in the Great Lakes.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.